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Abstract 

The current fault diagnosis method has the problems of long time and low recognition rate of fault diagnosis for the gear 

fault diagnosis of automobile transmission. For these problems, a fault diagnosis method for gear of automobile transmission 

based on improved particle swarm optimization algorithm is proposed in this paper. The speed information of gear fault 

vibration signal is extracted. The extracted speed information is used for uniform angular resampling of gear fault vibration 

signal and converted to angular domain signal. The cyclostationary demodulation analysis is carried out to the angular domain 

signal, and the slice demodulation is performed at each order of the fault feature of the cyclic autocorrelation function. 

Compound fault diagnosis of gearbox is achieved based on slice demodulation spectrum of each slice signal. In order to improve 

the accuracy of fault diagnosis and reduce the time of fault diagnosis, the CGA algorithm is introduced. The CGA acceleration 

operator is introduced in every step of iterations of particle swarm optimization, so that the local search ability of particle swarm 

optimization can be improved. The local convergence speed and convergence accuracy of PSO can be greatly improved. 

Simulation results show that the proposed method can effectively shorten the time of fault diagnosis and improve the efficiency 

of fault diagnosis and recognition. 
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1. Introduction 

Gear is an essential part of mechanical equipment to 

transmit power and change speed and direction. It has strong 

bearing capacity, accurate and reliable transmission, and 

large transmission power and speed of gear [1, 2]. Once a 

failure occurs, it will cause the mechanical equipment to 

fail. If it is diagnosed in advance, it can effectively avoid 

accidents, eliminate continued damage, and save a lot of 

maintenance costs [3]. The automobile gearbox is the main 

driving part of the car. Accurately monitoring the running 

status of the transmission, and forecasting the possible 

faults in advance are important for product improvement, 

testing equipment, and personnel safety [4]. How to 

efficiently diagnose the gear fault of transmission has 

become the primary problem of current research. 

In recent years, some new algorithms for fault diagnosis 

have been proposed by scholars. In the literature [5], a new 

gear fault diagnosis method which reflects the complexity 

or nonlinearity of the signal, which is called partial mean 

multiscale fuzzy entropy (PMMFE), is proposed. PMMFE 

is proposed based on multiscale fuzzy entropy. Although 

multiscale fuzzy entropy contains temporal pattern 

information at different scales, the representation of signals 

with similar feature is not ideal at most scales. PMMFE 

synthetically considers fuzzy entropy of multiple scales. By 

using the skewed distribution characteristics of fuzzy 

entropy at different scales, the complexity or nonlinearity of 

signals can be quantitatively characterized, and the 

characteristics of signal can be reflected more accurately. 

However, the gear fault vibration signal in gearbox is multi-

source vibration signal, so the feature extraction must be 

carried out after the original signal of gear vibration is 

separated. The adaptive and sparsest time-frequency 

analysis (ASTFA) method can effectively separate the 

original signal of gear fault vibration according to the initial 

phase function determined by the gear meshing frequency. 

The combination of ASTFA and PMMFE is applied in gear 

fault diagnosis. The fault vibration signal of gear in the 

gearbox is separated by ASTFA, and the multiscale fuzzy 

entropy of the signal is calculated. The fault diagnosis of the 

gear is accomplished by calculating the PMMFE based on 

the multiscale fuzzy entropy. This method is not ideal for 

most of the similar feature signals, resulting in low 

recognition rate. In the literature [6], a gear fault diagnosis 

method based on two classes of features of kurtosis and 

intrinsic mode component energy and least squares support 

vector machine is proposed. Based on ensemble empirical 

mode decomposition, the effective IMF components of the 

measured gear vibration signal are extracted to calculate 

energy characteristics and kurtosis values. Two classes of 

feature vectors in time and frequency domain are built. 

Secondly, the two class feature vectors in time-frequency 

domain of the 3 kinds of states of the normal gear, the tooth 

root crack and the broken tooth are taken as the input to 

build the gear fault diagnosis model for the gear fault 

identification. However, this method cannot accurately 

identify the type of fault. In the literature [7], a dual-tree 

complex wavelet denoising fault diagnosis method based on 

morphological component analysis is proposed. The 

wavelet transform coefficients of different layers are 

* Corresponding author e-mail: 595900302@qq.com. 



 © 2020 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 14, Number 1  (ISSN 1995-6665) 176 

obtained by dual-tree complex wavelet transformation of 

the fault signal with strong background noise. The wavelet 

coefficients with the obvious periodicity are selected for 

MCA denoising. After the single parameter reconstruction 

of the denoised coefficients, the fault feature signal can be 

obtained. The envelope analysis of the denoised signal can 

determine the fault feature frequency of the signal. 

However, this method can effectively remove strong 

background noise in signals. In the literature [8], a gear fault 

diagnosis method based on adaptive stochastic resonance 

and sparse coding shrinkage algorithm is proposed. 

Correlation kurtosis is used as a measure function of 

stochastic resonance to detect periodic impact components. 

The periodic impact features in the signal is adaptively 

extracted by using genetic algorithm. On this basis, the 

sparse coding contraction algorithm is used to further 

denoise the random resonance detection results, thus 

highlighting the impact feature and completing the fault 

identification of the gear. However, this method has a long 

fault diagnosis time.  

For these above problems, a gear fault diagnosis method 

for automobile transmission based on improved particle 

swarm optimization algorithm is proposed in this paper. The 

main research is described as follows. 

(1) The rotational speed information of gear fault vibration 

signal is extracted. 

(2) The extracted speed information is used for uniform 

angular resampling of gear fault vibration signal and 

converted to angular domain signal. The cyclostationary 

demodulation analysis is carried out to the angular domain 

signal, and the slice demodulation is performed at each 

order of the fault feature of the cyclic autocorrelation 

function. Compound fault diagnosis of gearbox is achieved 

based on slice demodulation spectrum of each slice signal. 

(3) To improve the accuracy of fault diagnosis and reduce 

the time of fault diagnosis, the CGA algorithm is 

introduced. The CGA acceleration operator is introduced in 

the iterations of particle swarm optimization. Then the local 

search ability of particle swarm optimization can be 

improved and the local convergence speed and accuracy of 

PSO can be greatly improved. 

2. Fault Diagnosis Method 

2.1. Gear Feature Parameter Extraction Method Based on 

VMD Algorithm 

In the fault diagnosis of gearbox, because the original 

vibration signal of the gear is not easy to distinguish the gear 

fault mode, it is particularly necessary to extract the feature 

parameters of the gear vibration signal. Therefore, a gear 

feature parameter extraction method based on VMD is 

proposed. 

In order to reduce the influence of other idle gears on the 

vibration response of gearbox, the single-stage fixed shaft 

gearbox is selected as the simulation object. The schematic 

diagram of single-stage fixed shaft gearbox is shown in 

Figure 1, where the red path represents the transmission 

path of meshing vibration of fixed shaft gearbox: meshing 

point gear bearing box sensor.  
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Input shaft

Driving wheel
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Figure1. Schematic diagram of gear box  

The gear can be regarded as a vibration system with the 

gear tooth as the spring and the gear body as the mass. The 

exciting force of the self-excited vibration of the system is 

caused by the periodic change of gear stiffness, gear 

assembly error and torque change. Once generated, the gear 

will generate the torsional vibration in the circumferential 

direction and the bending vibration of the gear shaft, 

resulting in the gear noise corresponding to the meshing 

frequency.  

In the VMD algorithm, the concept of intrinsic mode 

function (IMF) in EMD algorithm is applied and redefined. 

The IMF in the VMD algorithm is made as amplitude 

modulated and frequency modulated signal, which is 

expressed as 

     cosi i iu t A t t                                                  (1) 

where 
 iA t

 is a non-negative envelope function, that 

is, 
  0iA t 

, 
 i t

 is a non-decreasing function, that is, 

  0i t 
.  

The instantaneous frequency 
   'i iw t t

 and 

 iA t
 is far less than the phase 

 'i t
, that is , 

 iu t
 can 

be considered as a harmonic signal with the amplitude 

 iA t
 and the frequency 

 iw t
 in the 

    , 2 / 'it t t      
region.  

In order to construct the variational model, the following 

steps are needed. 

(1) The Hilbert transform is used to transform all the modal 

functions 
 iu t

 into the corresponding analytic signals, so 

as to obtain the unilateral spectrum of the signal. 

(2) All modal functions are demodulated to the 

corresponding baseband according to the estimated center 

frequency and the exponential correction method. 

(3) In order to obtain the constrained variational model 

given by Eq. (2) and Eq. (3), the bandwidth of each band 

must be used. The bandwidth can be obtained based on 

Gaussian smoothing demodulation signal, that is, the square 

root operation of the 2L
 norm gradient.  

  
    2

2min ||
i i

jwt

t i
u w

i

j
t u t e

t

   
      

   
              (2) 

i

i

u f                                                                    (3) 

In order to solve the optimal solution of the constrained 

variational model given by Eq. (2) and Eq. (3), the 
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augmented Lagrange function is constructed by penalty 

factor a , which is given by 
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where   is the Lagrange multiplier, a  is the penalty 

factor.  

In order to obtain the extremal solution of Lagrange 

function, it is necessary to transform it from time domain to 

frequency domain. The modal component and frequency 

domain is calculated by using as follow: 
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(4) The alternating direction multiplier algorithm is used to 

obtain the optimal solution of the constrained variational 

model. The original analytical signal is decomposed into k  

modal components. The steps of solving the optimal 

solution are as follows; 

1) Initialize 
 1

iu
, 
 1

iw
, 

1 , n , and 
1 0n   . 

2) Iteratively update iu
 and iw

 by using Eq. (5) and Eq. 

(6). 

3) Iteratively update 
1n 

 by using Eq. (7). 

       1 1n n n

i

i

w w f w u w    
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 
              (7) 

4) When 

1 2 2

2 2|| || / || ||n n n

i i i

i

u u u   
 is satisfied, the 

iteration stops, otherwise it returns to step 2) to continue the 

iteration, and finally to output k  modal components. 

VMD is compared with EMD and LMD. The 

decomposition of EMD and LMD signals is recursive 

filtering mode, while VMD is a non-recursive and 

variational mode decomposition method, which can make 

the decomposed modal component no longer cause modal 

aliasing [9]. Therefore, VMD has excellent robustness in 

noise signal processing. Through properly controlling the 

convergence condition of VMD, the sampling effect is 

much lower than that of EMD and LMD. In addition, VMD 

can effectively separate the signals with similar frequencies. 

The vibration signal of gear is decomposed by VDM, 

and several modal components of different components are 

successfully separated. The singular features are extracted 

by using modal component. But there is a problem in the 

VMD algorithm. The parameters k  and a  in the algorithm 

need to be set in advance depending on personal experience 

[10]. If the number of modal decomposition k  is not set 

reasonably, the modal separation after decomposition will 

be different from the actual situation. According to a priori 

knowledge, the decomposition of EMD algorithm can 

adaptively adjust the number of the decomposed modal 

components. By using the EMD decomposed signal, the 

decomposition parameter k  of VMD can be obtained 

according to the EMD decomposition result.  

The feature extraction of gear includes two steps: 

1) With Optimal parameter combination, the collected 

vibration signal of the gear is decomposed by VDM, and the 

k  modal components are obtained. 

2) The gear speed information is extracted by using the 

VMD-based gear feature parameter extraction method, 

which is given by 
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where 

 1 2, , , k

X

diag    
 and the feature vector 

of gear fault 
 1 2, , , kD    

. 

 

2.2. Gear Fault Diagnosis Method Based on CPP 

Algorithm 

The CPP algorithm, order tracking and cyclostationary 

demodulation method are combined to diagnose the gear 

fault. The gearbox fault is composed of partial fault of gear 

and partial fault of bearing in wheel box [11]. The process 

of the fault diagnosis is described as follows. 

If the statistical characteristics of non-stationary random 

signal 
 x t

 change periodically or periodically with time, 

 x t
 is called cyclostationary signal. Autocorrelation 

function of asymmetrical form of the signal 
 x t

 is given 

by 

      , *R t E x t x t  
                               (9) 

where   is the time delay, 
 *E

 is the mean operation, 

and *  denotes conjugate.  

Assume the signal satisfies time ergodicity, the signal is 

sampled with the sampling period, and then it can be 

expressed as an average of time:  

      
 

 0

1
, * , lim *

2 1N
R t E x t x t x t nT

N
 


  

 (10) 

where 0T
 is the sampling period, N  is the sampling 

length. 

In the case of the fixed  , the correlation function 

 ,R t 
 is a function of time, with a period of 0T

. 

Therefore, the Fourier series expansion of 
 ,R t 

 is given 

by 

     , exp 2R t R i t


                                (11) 

where   is the cycle frequency, which includes zero 

cycle frequency and non-zero cycle frequency. The zero 

cycle frequency represents the stationary part of the signal, 

and the non-zero cyclic frequency represents 

cyclostationarity of the signal. 

Fourier coefficient in Eq. (11) is given by 
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T
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where T  is the sampling interval, 
  02 1T N T 

, 

 R 
 is the cyclic autocorrelation function, which is the 

joint function of cycle frequency   and time delay  . The 

AM signal expression is as follows: 

     1 cos 2 cos 2n zAM t Q B f t f t                (13) 

where, nf  is the modulation frequency of AM signal, 

zf
 is the carrier frequency of AM signal, 

Q
 is the 

amplitude of carrier signal, B  is the spectrum of AM 

modulation signal 

Eq. (13) is substituted into Eq. (12), cyclostationary 

demodulation analysis of angular domain signal is 

expressed as 

 

     
12

1 2 1 2
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1
lim exp exp 0

T

T
T

iw t iw t dt w w
T
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 (14) 

Compound fault diagnosis of gearbox is obtained 

according to slice demodulation spectrum of each slice 

signal, which is expressed as 
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           (15) 

From Eq. (15), the non-zero value of the cyclic 

autocorrelation function 
 R 

 is only located at the cycle 

frequency =0 , 
= nf 

, 
= 2 nf 

, etc. At other cycle 

frequencies, the value of cyclic autocorrelation function 

 R 
 is zero. 

When the gear in gearbox has partial fault, the rotational 

frequency modulation phenomenon will occur in its 

vibration signal. When local fault occurs in rolling bearing, 

the feature frequency modulation of bearing fault will occur 

in its vibration signal [12]. Therefore, when the gear box 

and bearing local fault occur simultaneously in the gearbox, 

the diagnosis of the composite fault of the gear box 

containing the local fault of the gear and the local fault of 

the bearing can be diagnosed according to the difference of 

the modulation frequency of the two defaults. 

The cyclostationary demodulation analysis method can 

extract modulation information of amplitude modulated 

signal according to the modulating frequency of each 

amplitude modulated signal. However, for the non-

stationary signals with varying speed, the second-order 

statistics change with time and do not satisfy the second-

order cyclostationary assumption. Then the cyclostationary 

demodulation method is no longer applicable, and the signal 

needs to be stabilized in advance. The computed order 

tracking method can effectively realize signal stabilization 

by resampling the signal. But the computed order tracking 

method needs to predict the speed information of the signal. 

Therefore, combining the CPP algorithm, order tracking 

and cyclostationary demodulation method, a gear fault 

diagnosis method based on CPP and cyclostationary 

demodulation is proposed for analysis of local fault of gear 

and local fault of rolling bearing. Assume the measured 

fault vibration signal of gear is 
 x t

, the number of gear 

teeth is T , then the steps of gear fault diagnosis based on 

CPP and cyclostationary demodulation are described as 

follows. 

(1) The meshing frequency 
 zf t

 of gear box is extracted 

from the vibration signal 
 x t

 of gear fault by CPP 

method. The rotational frequency curve 
 rf t

 of the shaft 

can be obtained by dividing the meshing frequency 
 zf t

 

with the number of the gear teeth T . 

(2) According to the estimated frequency curve 
 rf t

, the 

order analysis of the vibration signal 
 x t

 is carried out to 

obtain the angular domain signal 
 x 

.  

(3) The cyclostationary demodulation of the angular domain 

signal 
 x 

 is carried out to obtain the cyclic 

autocorrelation function 
 R 

.  

(4) The cyclic autocorrelation function 
 R 

 is sliced 

separately at the order of gear fault cycle and the order of 

bearing failure cycle. The slice signal is demodulated and 

analyzed, and its slice demodulation spectrum is obtained. 

(5) If there is a significant peak in the rotational frequency 

order or its frequency doubling order in the slice 

demodulation spectrum of the gear fault cycle order, it is 

determined that a local fault occurs in the gear. If in the slice 

demodulation spectrum of the rolling bearing fault cycle 

order, the fault order of the rolling bearing appears obvious 

peak, it is determined that there is a local fault in the gear 

bearing. 

2.3. Introducing CGA Algorithm to Improve the Local 

Convergence Speed and Convergence Accuracy of Particle 

Swarm Optimization Algorithm 

Particle swarm optimization algorithm is based on the 

simulation of migration and gregarious foraging process. 

The mathematical expression is described as follows. 

Assume target search space is d -dimensional and the 

population consists of m  particle groups. The velocity of 

the i th particle is 
 1 2, ,i i idV v v v 

 and the position 

vector is 
 1 2, ,i i idX x x x 

, the searched optimal 

location of the population is 
 1 2, , ,g g g gdP p p p 

, the 

current searched optimal position of the i th particle is 

 1 2, , ,i i i idP p p p 
. The particle expression is as 

follows:  

         1 1 2 21id id id id id idv t v t c r p x t c r p x t     
(16) 

     1 1id id idx t x t v t                                 (17) 
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where the range of the value of i  is 
[1, ]m

, the range of 

the value of d  is 
[1, ]D

, 1r  and 2r  are random numbers 

with uniform distribution in 
[0,1]

, 1c
 and 2c

 are 

acceleration factors, which is non-negative number, idp
 is 

the current searched optimal position of the i th particle, 

idv
 is the current velocity of the i th particle, 

 idx t
 is the 

current position of the i th particle.  

Although particle swarm optimization is an excellent 

global optimization algorithm, it is not good to process the 

discrete optimization problem, and easy to fall into local 

optimum [13]. It will lead to long time and low recognition 

rate of fault diagnosis. The CGA acceleration operator is 

introduced in iterations of particle swarm optimization, so 

that the local search ability of particle swarm optimization 

can be improved. The specific implementation process is as 

follows. 

(18) 

           1 21 1i i i ix k x k k v k k d k          (19) 

where 


 is influence scale factor of CGA, which is a 

fixed value in 
 0,1

, 


 is the constraint factor, which is a 

constant in 
 0,1

, 
 id k

 is the direction of the conjugate 

gradient or the steepest descent direction, 1  and 2  are the 

scale factors of the relative influence of CPP algorithm. The 

selection of 1  and 2  influences the overall performance 

of the algorithm. The selection of 1  and 2  are given by  

  max

1

max

k k
k

k





     

                                               (20) 

 2

max

k
k

k
                                                                   (21) 

where k  is the number of current evolutionary 

generation, maxk
 is the maximum number of current 

evolutionary generation. 
   1 2 1k k  

. 
 1 k

 and 

 2 k
 are variables and change with k . The purpose is to 

dynamically adjust the update of each particle and 

determine the influence of the basic CPP algorithm and 

CGA. 

The specific steps of the improved particle swarm 

algorithm are as follows. 

(1) Initialize all particles. Randomly determine the initial 

position and velocity of each particle. Particle swarm 

optimization is designed to optimize the target value of the 

desired error for a given optimization problem [14, 15]. 

(2) Design the fitness function of population. 

(3) Calculate the initial fitness value of each particle and 

determine the optimal position of the initial individual of 

each particle. Initialize global optimal position and calculate 

 1 k
,  

 2 k
, and initial gradient and initial search 

direction of each particle. 

(4) The current generation is the k th generation, 

1 max, ,k k k 
. If 1k  , the initial fitness value of the 

current generation of each particle is the initial fitness value. 

The individual optimal position of each particle is the initial 

individual optimal position, and the global optimal position 

is the initial global optimal position. If 1k  , the fitness 

value of the current generation of each particle is calculated 

by fitness function. Then the optimal location 
 idp k

 and 

global location 
 gdp k

 of each particle are updated with 

the next steps. 

(5) Update the individual optimal position 
 idp k

. 

(6) Update the global optimal position 
 gdp k

. 

(7) Calculate the conjugate gradient 
 id k

 of the current 

generation of each particle. Then calculate 
 1 k

 and 

 2 k
 by using Eq. (20) and Eq. (21). 

(8) Update the velocity and position of each particle by 

using Eq. (18) and Eq. (19). 

(9) Calculate new gradient 
 ig k

 and search direction 

 id k
.  

(10) The number of evolutionary iterations plus 1. 

(11) Check whether the condition is satisfied. If it is 

satisfied, the optimization ends. Otherwise, go to step (4) 

for loop executing, until the optimal number of evolution 

maxk
 is reached or the optimization error corresponding to 

the global optimal particle is less than the given error. 

3. Experimental Results and Analysis 

In order to prove the validity of the proposed algorithm, 

a simulation experiment is carried out. The test platform of 

gear box fault detection system is built by using PCI1712 

data acquisition module.   

In the gearbox, about 60% of the faults are caused by 

gear faults. The three faults of the gear are identified, which 

are no fault, tooth root crack, and broken tooth. The 2, 4, 

and 6 gear position were selected in the frequency domain 

feature signal extraction. The amplitudes at the side band 

s zf nf
 of the 1, 2, and 3 bearing are 1ijA

, 2ijA
, and 3ijA

, where 
 zf t

 is the meshing frequency of the gear, zf
 is 

the rotational frequency of the bearing, 1,2,3n  , 

2,4,6i   is the gear position, 
1,2,3j 

 is the number of 

the bearing. Because there are two pairs of gears on the 2 

bearing and 3 bearing, 1 and 2 represent two meshing 

frequencies respectively. So, the input of the network is a 

15-dimensional vector. The schematic of the transmission is 

shown in Figure2. the sensor accelerometer is shown in 

figure 3. The transmission vibration data is shown in Table 

1. 
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Figure 2. Schematic of the transmission  Figure 3 Sensor 

Accelerator  

In CATIA, a 3D model of gearbox components is 

established, which is endowed with specific material 

attributes, and local coordinate system is added to the 3D 

model according to the relative position relationship; the 3D 

model of the components is imported into LMS virtual lab 

software, and the geodetic coordinate system is added to the 

motion module to simulate the gearbox workbench; the 

coordinates on the components are one-to-one 

corresponding, which is based on the actual situation For 

the inter contact relationship, four fixed pairs are added 

between the earth and the gearbox box, and rotating pairs 

are added between the driving wheel and the driven wheel 

and the earth respectively; bushing force is added at the 

bearing to simulate the rolling bearing, and joint position 

driver is added on the rotating pair between the driving 

wheel and the earth to simulate the gear drive.  

 
Figure 4. Dynamic model of gear box multi-rigid body  

Set the gear breaking or eccentric fault on the driving 

wheel and driven wheel respectively, and record the gear 

breaking of driving wheel as condition 1, the gear breaking 

of driven wheel as condition 2, and the common fault as 

condition 3. 

Table 1. transmission vibration data 

Vibration 

parameters 

Working 

condition 1 

Working 

condition 2 

Working 

condition 3 

Swing around 
X-axis at 

front box 

bearing 

334.02 351.65 - 

Box swinging 

around X-

axis 

413.45 410.34 211.93 

Tilt vibration 

of xoy 

surface of 
front box 

diaphragm 

446.25 447.53 - 

Inclined 
vibration of 

box on xoy 

surface 

528.93 526.12 273.65 

Reciprocating 

vibration of 

front box rib 
in Y-axis 

direction 

647.78 643.38 384.65 

Because these data have different units and orders, the 

input variables are normalized. Experimental data are 

collected with MATLAB R2007, and 12 sets of data are 

collected, of which 9 sets used as training samples and 3 sets 

as test samples. During the training process, the CPP 

package of MATLAB is called. The CPP network design 

function selects newbre, and the feature samples in the 

training samples are used as input variables of the CPP 

network, and the gear state is used as the output of the 

network. The following form is used: No fault (1, 0, 0), gear 

crack (0, 1, 0), and broken tooth (0, 0, 1). The training set 

finally determines that when the expansion constant is 

0.0838, the training effect is the best, and the network output 

is consistent with the actual output. 

In order to verify the effectiveness of the experiment, the 

data shown in Table 2 is used as the test sample set, and the 

gear state is used as the output of the network to verify the 

built CPP network model. The results are shown in Table 3. 

In Table 1, S represents the number of the data, S1, S2, and 

S3 are the number 1, 2, and 3 of the data, T represents 

feature sample, C represents gear fault, Nf represents no 

fault, Gc represents gear crack, Bt represents broken tooth. 

In Table 3, Ao represents actual output, No represents 

network output, result represents diagnosis results. 
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Table 2. Test sample 

S T C 

 

 

S1 

 

0.2102 0.096 

0.1358 0.2602 

0.1002 0.7534 

0.090 0.0388 

0.1452 0.0129 

0.160 0.2453 

0.511 0.1320 

Nf 

 

 

S2 

 

 

0.2594 0.19 0.712 

0.2802 0.1500 

0.1297 0.1002 

0.1892 0.2531 

0.0876 0.0059 

0.1802 

0.0993 0.0803 

0.1003 

Gc 

 

S3 

 

 

0.2600 0.2236 

0.1202 0.1172 

0.1103 0.0684 

0.0623 0.2598 

0.2603 0.1169 

0.0050 0.1003 

0.1521 0.2283 

0.3206 

Bt 

Table 3. Diagnosis results 

S Ao No result 

S1 1  0  0 0.9815  0  0 Nf 

S2 0  1  0 0  0.9736  0 Gc 

S3 0  0  1 0.0286  

0.0268  1 

Bt 

From Table 3, it can be seen that, the first set of data 

errors are 0.0185, 0, and 0, respectively, the second sets of 

data errors are 0, 0.0264, and 0, respectively, and the second 

sets of data errors are -0.0286, -0.0268, and 1, respectively. 

It shows that the error between the actual output and the 

network output is relatively small, and the diagnosis result 

is consistent with the gear fault, indicating that the diagnosis 

result is correct. 

The fault diagnosis time of the proposed method is 

compared with that of the literature [5] method and the 

literature [6] method. The comparison results are shown in 

Fig. 5, Fig. 6, and Fig. 7. 

From Fig. 5, Fig. 6, and Fig. 7, it can be seen that, when 

the number of samples is 9, the fault diagnosis time of the 

proposed method is 3s, the literature [5] method is 10s, and 

the literature [6] method is 8s. The fault diagnosis time of 

the proposed method is the least, which shows that the 

proposed method can effectively shorten the fault diagnosis 

time. 

In order to further verify the fault diagnosis performance 

of the proposed method, the fault recognition rate of the 

proposed method, the literature [5] method, the literature [6] 

method, and the literature [7] method is compared. In the 

case of different faults, the comparison results of fault 

recognition rate of different methods are shown in Table 4. 

 

tim
e/

(s
)

Feature Vector Type/(One)
Stalls/(file

s)

2

4

6

8

10

2

8
6

10

4

1
2

3
4

5

 
Figure 5. The fault diagnosis time of the proposed method 
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Figure 6. The fault diagnosis time of the literature [5] method 
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Figure 7. The fault diagnosis time of the literature [6] method 

 

 
Table 4. Fault diagnosis accuracy rate of different methods 

Method Accuracy rate of fault diagnosis (%) 

Normal state Tooth root crack of 

intermediate shaft  

Ulnar wear of 

intermediate shaft 

Root wear 

of output 

shaft 

Ulnar wear 

of output 

shaft 

Accuracy rate of 

diagnosis (%) 

The proposed 

method 
100 98.0 95.0 90.0 95 95.6 

The literature 
[5] method 

98.0 90.0 90.0 80.0 75.0 86.6 

The literature 

[6] method 
99.0 85.0 81.0 79.0 65.0 81.8 

The literature 

[7] method 
99.0 80.0 75.0 70.0 68.0 78.4 
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From Table 4, it can be seen that, when the different 

faults of transmission gear of occur, the fault recognition 

rates of different methods are different. When the tooth root 

crack of intermediate shaft of the transmission is cracked, 

the fault diagnosis accuracy of the proposed method is 98%, 

the literature [5] method is 90%, the literature [6] method is 

85%, and the fault literature [7] method is 80%. The fault 

recognition rate of literature [7] method is the lowest. The 

diagnostic accuracy of the proposed method is 95.6%, the 

literature [5] method is 86.6%, the literature [6] method is 

81.8%, and the literature [7] method is 78.4%. The 

diagnosis accuracy of the proposed method is obviously 

better than other methods. The improved particle swarm 

algorithm significantly improves the fault diagnosis 

performance of the proposed method. 

4. Conclusions 

In the process of driving, the gears, shafts and bearings 

in the gearbox often fail because of the frequent shifting. 

According to the relevant statistics, among all the 

automobile faults, about 60% of the automobile 

transmission faults are caused by gear failure. At present, 

the fault diagnosis method of automobile transmission gear 

has the problems of long diagnosis time and low recognition 

rate. In order to solve these problems, a fault diagnosis 

method based on improved particle swarm optimization 

algorithm is proposed. The speed information of gear fault 

vibration signal is extracted, which is used for uniform 

angle resampling of gear fault vibration signal and 

converted into angle domain signal. The cyclic stationary 

demodulation of the diagonal domain signal is analyzed, 

and the fault characteristics of the cyclic autocorrelation 

function are demodulated by slice. Based on the slice 

demodulation spectrum of each slice signal, the composite 

fault diagnosis of gearbox is realized. In every iteration of 

particle swarm optimization algorithm, CGA acceleration 

operator is introduced to optimize the fault diagnosis results 

and realize the fault diagnosis of automobile transmission 

gears. The simulation results show that compared with the 

traditional method, this method has higher fault diagnosis 

efficiency and shorter fault diagnosis time. This method 

provides a new idea for the further development of fault 

diagnosis technology of automobile transmission gears, 

improves the accuracy of fault identification, reduces the 

time of fault diagnosis, and ensures the driving safety.  

The fault detection and diagnosis technology of 

automobile transmission gear usually completes the 

diagnosis under a single condition, which has good effect. 

However, in practice, due to the relatively cumbersome 

mechanical mechanism and the interference of other 

elements, many diagnosis technologies are difficult to fully 

use. In the future work, for the fault diagnosis of different 

specifications of gears, we should continue to try to improve 

the accuracy of fault diagnosis of automobile transmission 

gears. 
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