Quota Allocation to Distributors of the Supply Chain under Distributors’ Uncertainty and Demand Uncertainty by Using Fuzzy Goal Programming

B. Chandra Mohana Reddya*, K. Hemachandra Reddyb, C. Nadha Muni Reddyc \\
K. Vijaya Kumar Reddyd

a,b Mechanical Engineering Department, J.N.T.U. College of Engineering, Anantapur – 515002, A.P. India \\
c S.V.P.C.E.T, Puttur, Chittur (dist), A.P., India \\
d Mechanical Engineering Department, J.N.T. University, Hyderabad, A.P., India

Abstract

The supply chain consists of multiple components including suppliers, manufacturing centers, and distributors. The decision-making on quota allocation to distributors under Distributors’ uncertainty and demand uncertainty are important parts of the supply chain of many firms. In this paper, fuzzy goal programming approach is applied for quota allocation to distributors of the supply chain. Customers are assumed as a random variable, and distribution is continuous and normal. Due to surge effect, the demand through supply chain is varied, which is calculated for a particular inventory policy for reserve stock, and sudden rise and fall of demand to the Std limits of normal distribution. The maximum and minimum values of demand at the distributors’ stage are considered for various Std limits. And they formulate a fuzzy goal programming by considering linear member function. Commercially available LINDO software is used to solve the fuzzy goal-programming problem for quota allocation to the distributors. From the results, it is found that maximized sales revenue, minimized transportation cost, minimized late deliveries, and minimized defective items are increased from maximum STD limit to the minimum STD limit. Change in minimized late deliveries and minimized defective items are negligible to consider. Moreover, difference of maximized sales revenue and minimized transportation cost is significant to consider, and it is increased from maximum STD limit to the minimum Std limit of demand. This means maximum difference can be obtained at low fluctuation of the demand than the high fluctuation of the demand. The formulated Fuzzy Goal Program can be used to solve actual problems.

Keywords: Normal continuous distribution, Linear membership function, Fuzzy goal programming, and Decision-making.

1. Introduction

Supply chain is a set of facilities, supplies, customers, products; and methods of controlling inventory, purchasing, and distribution. In a supply chain, flow of goods between a supplier and a customer passes through several echelons, and each echelon may consist of many facilities.

This paper focuses mainly on distribution performance and quota allocation to distributors and its selection under distributors’ uncertainty and demand uncertainty. In designing a supply chain, a decision maker must consider decisions regarding the selection of the right distributors and their quota allocation. The choice of the right distributor is a crucial decision with extensive implications. By nature, distributor selection is a multi-criterion decision-making problem. A supply chain decision faces many constraints. Some of these are related to distributors’ internal policy and externally imposed system requirements. In such decision making situations, high degree of fuzziness and uncertainties are involved. Fuzzy set theory provides a framework for handling the uncertainties of this type [6].

In this paper, a fuzzy goal programming approach is used to solve the multi-objective-optimization problems for quota allocation to the distributors in supply chain. Since crisp set assign a value of either 1 or 0. Whereas in fuzzy set is not assigned such a value. But the value of any set lies between 1 and 0. A function can be generalized such that the value assigned to the element of the universe set fall within specified range and indicated member ship grade of this element in the set. Such a function is called a

*Corresponding author. e-mail: cmr_b@yahoo.com.
fuzzy membership function, and set defined by it is called a fuzzy set [9].

Membership functions which can be used in fuzzy goal programming problem are linear membership functions or no linear membership function. Fuzzy mathematical programming which is defined by a non-linear membership function results in a non-linear programming. Usually a linear membership function is employed for linear programming in order to avoid non-linearity [7]. Therefore, in this paper, a linear membership function is employed for both objectives and constraints, which is having fuzziness.

The central four fuzzy goals considered in this paper are maximization of sales revenue, minimization of transportation cost, minimization of defective items rejected and minimization of late deliveries with constraint such as minimum and maximum capacity of distributors, maximum budget allocated to distributors, and maximum flexibility of distributors and maximum sales value of distributors. First, the problem is formulated as multi-objective linear programming, and then it is reformulated as fuzzy goal programming by using variable λ. Commercial available LINDO software is used to solve the fuzzy goal-programming problem for quota allocation to distributors.

2. Review of Literature:

Complex and dynamic interactions between supply chain entities lead to considerable uncertainty in planning. Uncertainty tends to propagate the supply chain up and down. And it undergoes with surge or bullwhip effect [1]. Many proposed strategies for mitigating the bullwhip effect have a history of successful application [2]. This effect leads to inefficiencies in supply chains since it increases the cost for logistics, and it lowers its competitive ability. Particularly, the bullwhip effects negatively influence a supply chain in dimensioning of capacities, variation of demand, and high level of safety stock. Julija Petuhova and Yuri Merkuryev [8] carried out simulations to measure distributor’s performance before and after applying the supply-side collaboration. Their results show that the supply-side collaboration can improve distributor’s performance in terms of more accurate service level realization and better stabilizing effect.

Manoj Kumar, Prem Vrat and R. Shankar proposed a fuzzy multi-objective goal programming by using triangular membership function for allocating quantity to vendors and solved this by LINDO software. The proposed approach has the capability to handle realistic situations in a fuzzy environment and provides a better decision tool for the vendor selection decision in a supply chain. Hasan Selim, Ceyhun Araz and Irem Ozkarahan [4] had developed a multi-objective production-distribution planning model in the fuzzy environment for to improve the supply chain performance. Pandian Vasant [7] attempted to model decision processes with multiple criteria in business and engineering leads to concepts of multi objective fuzzy linear programming. Hasan Selim and Irem Ozkarahan have developed a supply chain distribution network design model. The goal of the model is to select optimum numbers, locations, and capacity levels of plants and warehouses to deliver products to retailers at the least cost while satisfying desired service level. Maximal covering approach is employed in statement of service level [10].

3. Why is Simulation and Fuzzy Set Theory Used in Supply Chain?

Due to the Bullwhip effect, a poor plan can easily spread to the whole supply chain areas. The impact of a poor plan on the overall business is huge. It causes cycles of excessive inventory and severe backlogs, poor product forecasts, unbalanced capacities, poor customer service, uncertain production plans, and high backlog costs, or sometimes even lost sales. Simulation and fuzzy set theory permit the evaluation of operating performance prior to the implementation of a system and also these enable companies to perform powerfully if analyses lead them to better planning decisions.

4. A Mathematical Model to Calculate Output Required at Each Stage in The Supply Chain for Uncertainty Demand.

A mathematical model is shown below to calculate output required and safety stock required at each stage of the supply chain. For these typical five stages, simple supply chain is shown in Figure 1. The five stages are suppliers, manufacturers, distributors, wholesalers, and retailers. If the demand by End-customers is D, and the policy for reserve stock specifies that a portion (r) should be held constant, then (rD) is the safety stock for finished products at the retailer’s stores. If there is a sudden rise or a sudden fall of demand at end-customers, then D (1 + x) quantities of products are needed at the retailers, and also the safety stock required now should be rD (1 + x). Here (x) is in terms of percentage of sudden rise or sudden fall of the demand [3]. The (x) in terms of percentage for 3Std limit of normal distribution is shown below.

\[x = \frac{(D + 3 \text{ Std}) - D}{D} \times 100 \]

\[x = \frac{(D - 3 \text{ Std}) - D}{D} \times 100 \]

Figure 1: Five stages of simple supply chain
Similarly x in terms of percentage can be shown for all other Std limits of normal distribution. Then the output required and safety stock required at each stage will be calculated by using the following equations.

Stage 1: Retailer
- Output required = D (1+x)
- Safety stock required = rD (1+x)

Stage 2: Wholesalers
- Output required = D (1+x) for the final stage + (rD (1+x) - rD) for the safety stock at the final stage = D (1+x) (1+r)
- Safety stock required = rD (1+x (1+r))

Stage 3: Distributors
- Output required = D (1+x (1+r)) for the 2 stage + (rD (1+x (1+r)) - rD) for the safety stock at the 2 stage = D (1+x (1+r)) 2
- Safety stock required = rD (1+x (1+r) 2)

Stage 4: Factories
- Output required = D (1+X (1+r)) for the 3 stage + (rD (1+X (1+r)) - rD) for the safety stock at the 3 stage = D (1+X (1+r)) 3
- Safety stock required = rD (1+X (1+r) 3)

And so on. It can be shown that the output required at the nth stage is D\textsubscript{n} then [3] D\textsubscript{n}/D = 1+x(1+r)n-1

5. Multi-Objective Distributor Model Under Distributors’ Uncertainty and Demand Uncertainty

Four distributors and four main objectives are considered such as: maximizing sales revenue (Z\textsubscript{1}), minimizing transportation cost (Z\textsubscript{2}), minimizing defective items rejected (Z\textsubscript{3}), and minimizing late deliveries (Z\textsubscript{4}). Besides, the constraints considered for formulation of the problem are minimum and maximum selling capacity of the distributors, maximum budget allocation to distributors, flexibility of distributors, and sales value of distributors. By considering above information, the problem is formulated as multi objective linear program as shown below [5].

5.1. Decision Variable
x\textsubscript{i} = order quantity from the distributors i, where i=1,2,…,N

5.2. Parameters
D Max. = Upper bound of aggregate demand of the item over a fixed planning period
D Min. = Lower bound of aggregate demand of the item over a fixed planning period
N = Number of distributors competing for selection
p\textsubscript{i} = Price of a unit item at distributors i
s\textsubscript{i} = Transportation cost of a unit item of the ordered quantity x\textsubscript{i} for the distributors i
l\textsubscript{d\textsubscript{i}} = Percentage of the late delivered units by the manufacturers to distributors i
C\textsubscript{1} Max. = Upper bound of the quantity that can be taken by distributors i
C\textsubscript{1} Min. = lower bound of the quantity that can be taken by distributors i
B\textsubscript{i} = Budget allocated to each distributors
d\textsubscript{i} = Percentage of rejected units delivered by distributors i
F\textsubscript{1} = Supplier quota flexibility for distributors i
F Max = Upper bound of total flexibility in quota that a distributors should have
F Min = Lower bound of total flexibility in quota that a distributors should have
R\textsubscript{i} = distributors rating value for distributors i
PV Max = Upper bound to total purchasing value that a distributors should have
PV Min = Lower bound to total purchasing value that a distributors should have:

Min. Z = (Z\textsubscript{1}, Z\textsubscript{2}, Z\textsubscript{3}, Z\textsubscript{4})

Subjected to
Σx\textsubscript{i} ≤ D, D is varying form D min. to D max.
x\textsubscript{i} ≤ C\textsubscript{i}, C\textsubscript{i} is varying form C\textsubscript{i} min. to C\textsubscript{i} max
x\textsubscript{i} ≤ B\textsubscript{i}

ΣF\textsubscript{1}x\textsubscript{i} ≥ F, F is varying form F min. to F max
ΣR\textsubscript{1}x\textsubscript{i} ≥ P, P is varying form P min. to P max
x\textsubscript{i} ≥ 0 and Z\textsubscript{4} = Σz\textsubscript{4} = ΣΣz\textsubscript{4} = ΣΣΣz\textsubscript{4} = ΣΣΣΣz\textsubscript{4}

6. Fuzzy Multi-Objective Model

Consider the fowling linear multi-objective model,
Opt Z = CX
s.t. AX ≤ b

Where Z = (x\textsubscript{1}, x\textsubscript{2}, …, x\textsubscript{K}) is the vector of objectives, C is a K*N matrix of constants, X is a an N*1 vector of the decision variables, A is an M*N matrix of constants and b is a M*1 vector of constants. This model can be applied to solve many real problems [4].To solve above problem a linear membership function can be used for each goal μ\textsubscript{1}(C\textsubscript{x}X), where

μ\textsubscript{1}(C\textsubscript{x}X) = \begin{cases} 1 & \text{if } C\text{x}X = C\text{x}X \leq C\text{x}X \leq C\text{x}X \\ 1 - (\beta\textsubscript{2} - C\textsubscript{x}X) & \text{if } C\text{x}X \leq C\text{x}X \leq C\text{x}X \\ 0 & \text{if } C\text{x}X > C\text{x}X \end{cases}

And another linear membership function is μ\textsubscript{2}(aX), for the ith constraint in the system constraints AX ≤ b, where

μ\textsubscript{2}(aX) = \begin{cases} 1 & \text{if } aX = aX \leq aX \leq aX \\ 1 - (aX - b\textsubscript{i}) & \text{if } aX = aX = aX = aX + b\textsubscript{d\textsubscript{i}} \\ 0 & \text{if } aX = aX = aX + b\textsubscript{d\textsubscript{i}} \end{cases}

Figure 2: Membership function for maximization of fuzzy goal
These membership functions are illustrated in Figure 2, Figure 3, and Figure 4 respectively. Where \(d_{1k} \) (\(k=1,2,\ldots,K \)) and \(d_{2i} \) (\(i=1,2,\ldots,M \)) are chosen constants of admissible violations, and \(a_{i} \) is the \(i^{th} \) row of matrix \(A \). \(\mu_{1k}(C_{k}X) \) and \(\mu_{2i}(a_{i}X) \) denote to the degree of membership of goals and constraints respectively. Degree of membership of goals and constraints express satisfaction of the decision maker with the solution. So, values of membership functions must be maximized [4].

In one of the fuzzy set theorems, membership function of intersection of any two (or more) sets is the minimum membership function of these sets. After eliciting linear membership functions and by applying this theorem, objective function of multi-objective linear programming model incorporating the fuzzy goals and fuzzy constraints can be formulated as follows [4].

\[
\text{Max } \lambda \min \left(\mu_{11}(C_{1}X), \ldots, \mu_{1K}(C_{K}X), \mu_{21}(a_{1}X), \ldots, \mu_{2M}(a_{M}X) \right)
\]

By introducing the auxiliary variable \(\lambda \), this problem can be equivalently transformed as.

\[
\text{Max } \lambda \quad \text{subject to:}
\]

\[
\mu_{1k}(C_{k}X) \geq \lambda, \quad k=1,2,\ldots,K
\]

\[
\mu_{2i}(a_{i}X) \geq \lambda, \quad i=1,2,\ldots,M
\]

According to above descriptions fuzzy linear program can be rewritten as following:

\[
\text{Max } \lambda
\]

\[
\lambda \leq \frac{1 - (a_{i}X - b_{i})}{d_{2i}}, \quad i=1,2,\ldots,M
\]

\[
0 \leq \lambda \leq 1 \text{ and } X \geq 0
\]

7. Fuzzy Goal Programming

Fuzzy Goal programming is one of the most powerful multi-objective decision making approach. If there are no priorities and also no relative importance assigned to objectives, formulation of fuzzy goal-programming model is similar to formulation in general fuzzy linear programming model. The main difference between Fuzzy goal programming and fuzzy linear programming is that fuzzy linear programming uses definite intervals determined by solution of linear programming models. And accordingly, the solution does not change from decision maker to another decision maker. Whereas in fuzzy goal programming, aspiration levels are specified by decision maker and reflect relative flexibility [4].

8. Methodology

The following methodology is used in three steps for quota allocation to distributors of the supply chain under Distributors’ uncertainty and demand uncertainty by using fuzzy goal programming. In the first step, demand at end customer is assumed as random variable and distributed as continuous normal distributed pattern. The Monte Carlo simulation method and Excel are used to simulate the demand for various random numbers. The 20 random numbers are generated by using Excel with command Rand(). The mean demand and standard deviation are calculated for demands of 20 random numbers.

In the second step, output required or demand for five stages of simple supply chain is simulated for various Std limits of normal distribution. Output required from down stream to up stream (stage-1 to stage-5) is increased for sudden raise of the demand and decreased for sudden fall of the demand at particular inventory policy for reserve stock \(r \). Therefore, this variability of demand from stage - 1 to stage-5 is called as surge effect. So that surge effect is simulated here for five stages supply chain.

In the third step, an illustration for quota allocation to distributors under distributors’ uncertainty is taken, and maximum and minimum outputs required for all STD limits at the stage of distributor are taken for demand uncertainty at distributors. For this, first multi objective linear programming problem is formulated; and is solved for individual objectives. With these results of individual objectives, fuzzy aspiration levels are fixed. And finally fuzzy goal programming problem is formulated and solved by using commercial available software LINDO.

9. Simulation of Demand Uncertainty at End Customer

The demand at end customer is assumed as random variable and distributed as continuous normal distributed pattern. In simulation process, mean of demand is assumed as (500) units and standard deviation Std is assumed as (25) units. The demand is calculated for the normal
distribution limits such as ±3Std, ±2Std, ±1Std and ±0.67Std and cumulative probabilities are taken from normal distribution tables to the Z values such as –3, -2, -1, 0, 1, 2 and 3 [3]. A graph has been plotted is shown in Figure 5 for calculated values of demand and cumulative values of probability distribution.

Figure 5: calculated values of demand and cumulative values of probability distribution.

The Monte Carlo simulation method Microsoft Excel is used to simulate the demand for various random numbers. The 20 random numbers are generated by the command Rand () and 20 numbers are considered as the probability of occurrence of the demand for 20 months. The value of demands for 20 months are taken from graph (From Figure 5) for corresponding random numbers and tabulated in Table 1. The mean and standard deviation are calculated for demands of 20 numbers.

10. Simulation of Surge Effect in Supply Chain

Surge effect in five stages supply chain is simulated for minimum and maximum fluctuation of the demand at end customer. Five stages supply chain is shown in Figure 1.

Here the demand is considered as two different cases for the limits of 0.67Std, 1Std, 2Std, 3Std of the normal distribution curve. In the first case, sudden rise of demand is considered from mean to upper limit of the demand. In the second case, sudden fall of demand is considered from mean to lower limit of demand. The (x) in terms of percentage for both the cases is calculated using the formulas, shown in the section-5.

Table 1: The value of demands for 20 months

<table>
<thead>
<tr>
<th>Months</th>
<th>Random numbers</th>
<th>Simulated demand (X)</th>
<th>D - X</th>
<th>(D - X)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30236</td>
<td>485</td>
<td>16.2</td>
<td>262.44</td>
</tr>
<tr>
<td>2</td>
<td>0.99278</td>
<td>572</td>
<td>-70.8</td>
<td>5012.64</td>
</tr>
<tr>
<td>3</td>
<td>0.047325</td>
<td>455</td>
<td>46.2</td>
<td>2134.44</td>
</tr>
<tr>
<td>4</td>
<td>0.662034</td>
<td>510</td>
<td>-8.8</td>
<td>77.44</td>
</tr>
<tr>
<td>5</td>
<td>0.293601</td>
<td>480</td>
<td>21.2</td>
<td>449.44</td>
</tr>
<tr>
<td>6</td>
<td>0.901139</td>
<td>530</td>
<td>-28.8</td>
<td>829.44</td>
</tr>
<tr>
<td>7</td>
<td>0.125719</td>
<td>468</td>
<td>33.2</td>
<td>1102.24</td>
</tr>
<tr>
<td>8</td>
<td>0.749202</td>
<td>515</td>
<td>-13.8</td>
<td>190.44</td>
</tr>
<tr>
<td>9</td>
<td>0.694485</td>
<td>510</td>
<td>-8.8</td>
<td>77.44</td>
</tr>
<tr>
<td>10</td>
<td>0.184959</td>
<td>472</td>
<td>29.2</td>
<td>852.64</td>
</tr>
<tr>
<td>11</td>
<td>0.901331</td>
<td>530</td>
<td>-28.8</td>
<td>829.44</td>
</tr>
<tr>
<td>12</td>
<td>0.367548</td>
<td>490</td>
<td>11.2</td>
<td>125.44</td>
</tr>
<tr>
<td>13</td>
<td>0.459338</td>
<td>492</td>
<td>9.2</td>
<td>84.64</td>
</tr>
<tr>
<td>14</td>
<td>0.696288</td>
<td>512</td>
<td>-10.8</td>
<td>116.64</td>
</tr>
<tr>
<td>15</td>
<td>0.406118</td>
<td>490</td>
<td>11.2</td>
<td>125.44</td>
</tr>
<tr>
<td>16</td>
<td>0.619101</td>
<td>508</td>
<td>-6.8</td>
<td>46.24</td>
</tr>
<tr>
<td>17</td>
<td>0.566073</td>
<td>504</td>
<td>-2.8</td>
<td>7.84</td>
</tr>
<tr>
<td>18</td>
<td>0.188001</td>
<td>477</td>
<td>24.2</td>
<td>585.64</td>
</tr>
<tr>
<td>19</td>
<td>0.323692</td>
<td>490</td>
<td>11.2</td>
<td>125.44</td>
</tr>
<tr>
<td>20</td>
<td>0.263223</td>
<td>482</td>
<td>19.2</td>
<td>368.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9972</td>
<td>52</td>
<td>13404</td>
</tr>
</tbody>
</table>

*Mean (D) = 498.6
\[\text{Mean (D)} = \frac{\sum_{i}^{n} X_i}{n} = 498.6 \]

*Standard deviation (Std) = \sqrt{\frac{\sum_{i}^{n} (D - X)^2}{n}} = 25.88822

By using this (x) in terms of percentage and inventory policy for reserve stock (r) in terms of percentage, quantity required at various stages through supply chain from downstream to upstream is calculated by using equation presented in section-5. The results are tabulated in table-2 and a graph is drawn and shown in Figure 6 for policy decision r = 20% and x for sudden rise and for sudden fall of demand.
Table 2: Quantity required at various stages in supply chain for sudden rise and sudden fall of demand and Inventory policy for reserve stock \(r = 20\% \)

<table>
<thead>
<tr>
<th></th>
<th>Upper standard limits</th>
<th></th>
<th>Lower standard limits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.67)std</td>
<td>1std</td>
<td>2std</td>
<td>3std</td>
</tr>
<tr>
<td>Demand rising</td>
<td>0.034788</td>
<td>0.051922</td>
<td>0.103844</td>
<td>0.155765</td>
</tr>
<tr>
<td>Retailers</td>
<td>515.9453</td>
<td>524.4883</td>
<td>550.3766</td>
<td>576.2644</td>
</tr>
<tr>
<td>Whole-salers</td>
<td>519.4144</td>
<td>529.666</td>
<td>560.7319</td>
<td>591.7973</td>
</tr>
<tr>
<td>Distributors</td>
<td>523.5772</td>
<td>535.8792</td>
<td>573.1583</td>
<td>610.4368</td>
</tr>
<tr>
<td>Factories</td>
<td>528.5727</td>
<td>543.335</td>
<td>588.07</td>
<td>632.8041</td>
</tr>
<tr>
<td>Suppliers</td>
<td>534.5672</td>
<td>552.282</td>
<td>605.964</td>
<td>659.645</td>
</tr>
<tr>
<td>Demand falling</td>
<td>0.034788</td>
<td>0.051922</td>
<td>0.103844</td>
<td>0.155765</td>
</tr>
<tr>
<td>Retailers</td>
<td>481.2547</td>
<td>472.711</td>
<td>446.8234</td>
<td>420.9356</td>
</tr>
<tr>
<td>Whole-salers</td>
<td>477.7856</td>
<td>467.534</td>
<td>436.4681</td>
<td>405.4027</td>
</tr>
<tr>
<td>Distributors</td>
<td>473.6228</td>
<td>461.3208</td>
<td>424.0417</td>
<td>386.7632</td>
</tr>
<tr>
<td>Factories</td>
<td>468.6273</td>
<td>453.865</td>
<td>409.13</td>
<td>364.3959</td>
</tr>
<tr>
<td>Suppliers</td>
<td>462.6328</td>
<td>444.918</td>
<td>391.236</td>
<td>337.555</td>
</tr>
</tbody>
</table>

Figure 6: for policy decision \(r = 20\% \) and \(x \) for sudden rise and for sudden fall of demand.

11. Quota Allocation to Distributors Under
Distributors’ Uncertainty and Demand Uncertainty
by Using Fuzzy Goal Programming Approach

11.1. Distributors’ Uncertainty
Distributors’ uncertainty is such that distributors cannot take fixed quantity from manufacturers. Quantity taken by uncertain distributors is varying from time to time. Generally this type of distributors can give good performance in certain range of quantity taken from the manufacturers i.e. between minimum quantities which the distributors can receive to maximum quantity distributors can be received from manufactures or factories. When distributors get below minimum quantity, they cannot give good performance due to loss of their business. Besides, distributors cannot get beyond maximum quantity due to their maximum constraint.

11.2. Demand Uncertainty
Similarly, demand of any item at end customers is dynamics; and is not fixed to a certain value. This also varies from time to time. Demand is assumed as continuous random variable and distribution as continuous normal distribution at end customers. Plus and minus Std limits of normal distribution are considered for variable demand. By using this end customers demand, demand at the distributors stage is calculated for each Std limit. This calculated demand at distributors’ stage is used in the multi objective linear program. The overall flexibility and overall purchase value rating variability are also considered for distributors of the supply chain.

Similarly, demand of any item at end customers is dynamics; and is not fixed to a certain value. This also varies from time to time. Demand is assumed as continuous random variable and distribution as continuous normal distribution at end customers. Plus and minus Std limits of normal distribution are considered for variable demand. By using this end customers demand, demand at the distributors stage is calculated for each Std limit. This calculated demand at distributors’ stage is used in the multi objective linear program. The overall flexibility and overall purchase value rating variability are also considered for distributors of the supply chain.

11.3. Variability of The Demand
The variability of demands (i.e. \(D_{\text{min}} \) and \(D_{\text{max}} \)) at stage of distributor in supply chain for all Std limits are taken form Table 2 and tabulate separately in the following Table 3.

Table 3 Variability of Demand for \(r = 20\% \) and Various Std Limits

<table>
<thead>
<tr>
<th>STD limits of Normal distribution</th>
<th>Variability of demand at the stage of distributor ((D_{\text{min}} - D_{\text{max}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.67 Std</td>
<td>474 - 524</td>
</tr>
<tr>
<td>1 Std</td>
<td>461 – 536</td>
</tr>
<tr>
<td>2 Std</td>
<td>424 – 573</td>
</tr>
<tr>
<td>3 Std</td>
<td>387 – 610</td>
</tr>
</tbody>
</table>
Table 4: Distributors Source Data of The Illustrative Example

<table>
<thead>
<tr>
<th>Distributors No.</th>
<th>S_1 Rs.</th>
<th>t_i Rs.</th>
<th>d_i (%)</th>
<th>I_d (%)</th>
<th>C_i Min. Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>20000</td>
<td>99.6</td>
<td>86</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>235</td>
<td>70500</td>
<td>99.9</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>225</td>
<td>56250</td>
<td>9.98</td>
<td>98</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>220</td>
<td>77000</td>
<td>9.97</td>
<td>88</td>
<td>4</td>
</tr>
</tbody>
</table>

\begin{align*}
&\text{Subjected to} \\
&474 \geq x_1 + x_2 + x_3 + x_4 \leq 524 (0.67 \text{ Std}) \\
&50 \geq x_1 \leq 200, 15 \geq x_2 \leq 235, 25 \geq x_3 \leq 225, 30 \geq x_4 \leq 220 \\
&100x_1 \leq 20000, 300x_2 \leq 70500, 250x_3 \leq 56250, \\
&350x_4 \leq 77000 \\
&25 \leq 0.996x_1 + 0.999 x_2 + 0.998 x_3 + 0.997 x_4 \geq 475 \\
&50 \leq 0.86x_1 + 0.92 x_2 + 0.98 x_3 + 0.88 x_4 \geq 450 \\
&x_1, x_2, x_3, x_4 \geq 0
\end{align*}

11.5. Aspiration Levels or Fuzzy Range:

In the Table 5, LPP Results of the individual objectives for minimum and maximum bound of constraints are shown for 0.67 Std limit.

Table 5: LPP Results of the Individual Objectives for Minimum and Maximum Bound of Constraints at 0.67 Std Limit

<table>
<thead>
<tr>
<th>S. No</th>
<th>Objectives</th>
<th>Min. bound</th>
<th>Max bound</th>
<th>Difference</th>
<th>Max bound Moved to</th>
<th>Fuzzy range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Max. Sales revenue</td>
<td>26250.00</td>
<td>164750.0</td>
<td>138500</td>
<td>303250</td>
<td>277000</td>
</tr>
<tr>
<td>2</td>
<td>Min. transportation cost</td>
<td>150.4082</td>
<td>1735.217</td>
<td>1584.8088</td>
<td>3320.0258</td>
<td>3169.6176</td>
</tr>
<tr>
<td>3</td>
<td>Min. Defective items rejected</td>
<td>1.3895</td>
<td>13</td>
<td>12.389535</td>
<td>25.3895</td>
<td>24.3895</td>
</tr>
<tr>
<td>4</td>
<td>Min. Late deliveries</td>
<td>1.2283</td>
<td>14.5614</td>
<td>13.3331</td>
<td>27.8946</td>
<td>26.6662</td>
</tr>
</tbody>
</table>
In case of goal programming selection of aspiration levels or fuzzy range is most important. From Table 5 for maximization of sales revenue, the difference between 26250.00 and 164750.0 is 138500. Then the maximum bound is moved to the 164750.0 + 138500 = 303250. Therefore, now the fuzzy range is 2 X 138500 = 277000 to maximize the sales revenue. Similarly, fuzzy range for other objectives can be calculated.

11.6. Linear Membership Functions

Figure 7: Linear membership function for sales revenue at 0.67 Std (Maximization)

Figure 8: Linear membership function for transportation cost at 0.67 Std (Minimization)

The Linear membership functions for other objectives like minimization of defective items rejected and minimization of late deliveries are same as Figure 8. Similarly the linear membership functions for other constraints like capacity limitation of distributors, flexibility of distributors and sales value of distributors are same as Figure 9.

11.7. Fuzzy Goal Programming

By using data from Table 6 and linear membership functions and introducing the auxiliary variable λ, the fuzzy goal programming problem can be written as follows for 0.67 Std limit.

Max λ

Subjected to

$$\lambda \leq \frac{Z_1 - 2625}{277000}, \lambda \leq \frac{3320}{3169} - \frac{Z_2}{.6176}$$

$$\lambda \leq \frac{25 .3895 - Z_3}{24 .3895}, \lambda \leq \frac{27 .8946 - Z_4}{26 .6662}$$

$$\lambda \leq \frac{x_1 + x_2 + x_3 + x_4 + 474}{50}, \lambda \leq \frac{x_1 - 50}{150}$$

$$\lambda \leq \frac{x_2 - 15}{220}, \lambda \leq \frac{x_3 - 25}{200} \lambda \leq \frac{x_4 - 30}{190}$$

$100 x_1 \leq 20000, 300 x_2 \leq 70500$

$250 x_3 \leq 56250, 350 x_4 \leq 77000$

$$\lambda \leq \frac{0.996 x_1 + 0.999 x_2 + 0.998 x_3 + 0.997 x_4 - 25}{450}$$

$$\lambda \leq \frac{0.86 x_1 + 0.92 x_2 + 0.98 x_3 + 0.88 x_4 - 50}{400}$$

$x_1, x_2, x_3, x_4 \geq 0, \ 0 \leq \lambda \leq 1$
11.8. Results and Discussions:

Table 6: Allocation of items for four distributors by Fuzzy goal programming

<table>
<thead>
<tr>
<th>Standard limits</th>
<th>x_1 in No. of items</th>
<th>x_2 in No. of items</th>
<th>x_3 in No. of items</th>
<th>x_4 in No. of items</th>
<th>λ</th>
<th>Total of x_1, x_2, x_3 & x_4 in No. of items</th>
<th>Variability of demand in No. of items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean 500 demand</td>
<td>74</td>
<td>109</td>
<td>141</td>
<td>176</td>
<td>0.16</td>
<td>500</td>
<td>No variability exactly =500</td>
</tr>
<tr>
<td>0.67 Std</td>
<td>70</td>
<td>109</td>
<td>119</td>
<td>183</td>
<td>0.126</td>
<td>481</td>
<td>474 - 524</td>
</tr>
<tr>
<td>1 Std</td>
<td>72</td>
<td>104</td>
<td>116</td>
<td>180</td>
<td>0.145</td>
<td>472</td>
<td>461 – 536</td>
</tr>
<tr>
<td>2 Std</td>
<td>78</td>
<td>86</td>
<td>111</td>
<td>177</td>
<td>0.182</td>
<td>452</td>
<td>424 – 573</td>
</tr>
<tr>
<td>3 Std</td>
<td>83</td>
<td>70</td>
<td>108</td>
<td>174</td>
<td>0.214</td>
<td>435</td>
<td>387 – 610</td>
</tr>
</tbody>
</table>

Table 7: Optimized values of the four objectives at various std Limits

<table>
<thead>
<tr>
<th>Standard limits</th>
<th>Max. Sales revenue in Rs. (1)</th>
<th>Min. transportation cost in Rs. (2)</th>
<th>Total cost = diff. of (1) & (2)</th>
<th>Min. defective items rejected in No.s</th>
<th>Min. Late deliveries in No. s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean 500 demand</td>
<td>136950</td>
<td>3081</td>
<td>133869</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>0.67 Std</td>
<td>133500</td>
<td>2918</td>
<td>130582</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>1 Std</td>
<td>130400</td>
<td>2880</td>
<td>127520</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>2 Std</td>
<td>123300</td>
<td>2557</td>
<td>120743</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>3 Std</td>
<td>117200</td>
<td>2662</td>
<td>114538</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>

From the simulation results, it is found that the quantity required at the stages through the supply chain from downstream to upstream is increased for sudden rise of demand of the end customers, and is decreased for the sudden fall of demand of the end customers.

Fuzzy goal programming problem is successfully formulated for multi objectives of distributors and for demand varying from maximum limit to the minimum limit at the stage of the distributors.

12. Conclusions:

- The surge effect in supply chain is simulated for uncertainty demand. The demand of the end customer is assumed as random demand of continuous normal distribution.
- From the simulation results, it is found that the quantity required at the stages through the supply chain from downstream to upstream is increased for sudden rise of demand of the end customers, and is decreased for the sudden fall of demand of the end customers.
- Fuzzy goal programming problem is successfully formulated for multi objectives of distributors and for demand varying from maximum limit to the minimum limit at the stage of the distributors.

![Figure 10: Sales revenue, Transportation cost and difference of two](image_url)
• The total allocated items are also maintained within the range of the variable demand at the stage of distributors. At minimum fluctuation of demand, the items allocated to distributors are more, so that it has been given high difference.

References: