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Abstract 

We construct a 2-D field model as a modified version of the 1-D model formulated in [1]  for the study of sound propagation 
in a diesel particulate filter (DPF) unit. The modified model  is used to evaluate both sound transmission losses and noise 
reduction factors of a typical  DPF unit at high temperatures. The 2-D model is formulated  using linearized  field Navier-
Stocks, energy, and continuity equations but  retains the normal as well as transverse component of gas velocity.  The 
temperature, pressure, density, and velocities of gas  profiles in the 2-D  space  and variation with time are assumed to be 
harmonic. By substituting the differentials of  the assumed forms of these variables with respect to both space and time in the 
governing field equations, a set of three coupled linear 2-D field variation equations for pressure, axial and transverse 
velocities is obtained.  The obtained  reduced model is solved analytically using Fourier series approximations for the 
obtained field variable functions in the reduced model. The approximate solution is used to build a 2-D acoustic model for the 
exhaust gases emission which accounts for both attenuation and phase shift defining the propagation wave constant. Also the 
obtained approximate solution is used to determine the acoustics impedance of the DPF unit, soot loading, noise and 
vibration damping, in addition to calculating the noise reduction factors (NRF). In the present study, unlike previous ones, 
six, rather than four, roots for wave propagation constant are obtained corresponding to the obtained six port acoustic DPF 
model. The results obtained using the present six -port model, for selected system parameters are graphically displayed and 
compared with those available in the open literature using a four- port model. The present model results show, in general, 
similar qualitative behavior and a significant quantitative improvement of the available results in the open literature obtained 
using a four port model. 
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1. Introduction 

    One of the leading technologies for meeting future 

particulate matter (PM) emission strict standards is the 

diesel particulate filter (DPF). These devices generally 

consist of a wall-flow type filter positioned in the exhaust 

stream of diesel engine vehicles. As the exhaust gases pass 

through the exhaust system, particulate emissions are 

collected and stored in the DPF. Because the volume of 

diesel particulates collected by the system will eventually 

fill up and even plug the DP filter, a method for controlling 

trapped particulate matter and regenerating the filter is 

necessary.  The DPF is a superior system in the reduction 

of particulate matters because it can reduce about 70% of 

the generated PM.   A typical DPF system contains a large 

number of thin tubes or cavities with a diameter of about 

(1-2 mm), and (0.15-0.5 cm) length.  It is available in 

several types such as: electric heater, burner (ceramic 

filter), and fuel additive type; the latter is a honey-comb 

ceramic. The honey-comb type constitutes an additive 

supply and an electronic system. In this type Fe is used as 

an additive whereby iron oxide is formed which reacts 

with carbon and then it is converted to iron. The DPF is 

connected at a suitable intervening location along   the 

exhaust gases path through the main exhaust pipe.  Thus 

the noise and vibration characteristics of exhaust system 

are expected to change and consequently affect the 

performance of the engine by developing back pressure, 

changing temperature and velocity of the exhaust 

gases...etc. Hence building an acoustic model for the DPF 

is valuable in predicting its effect on the overall 

performance of the DPF unit. 

The acoustic characteristics of the DPF systems have 

been the subject of many theoretical and experimental 

investigations, e.g [1-15]. Greevesm et. al  [1] studied 

theoretically the origin of hydrocarbons emission from 

diesel engines. Their results indicate that a DPF can 

eliminate some of PM and is a very promising as an after-

treatment technique. Yu and Shahed [2] studied the effects 

of injection timing and exhaust gas recirculation on 

emissions from a diesel engine. They classified a DPF 

action as filtration and regenerative processes. 

Konstandopoulous et al. [3] studied the DPF wall-flow, 

pressure drop and cooling efficiency. They used Darcy's 
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law to describe the coupling between neighboring channels 

of the DPF and to predict system variable changes in the 

fluctuating fields between the neighboring DFP channels. 

Peat [4] studied sound propagation in capillary tubes using 

FEM solutions of simplified wave equations for a visco-

thermal fluid flow.   Also, Astley and Cumings [5] 

presented FEM solutions to the axial flow though porous 

medium, based on simplified wave equation in a visco-

thermal fluid. They presented an analysis for the laminar 

flow with a parabolic velocity distribution and a quadratic 

flow cross-section. They simplified the governing 

equations by assuming that the axial gradients to be  

significantly smaller than the gradients over the cross-

section.  Employing  a simplified analysis presented in 

[4,6],  Dokumaci [7] obtained an exact solution for the 

case of a plug flow and a circular cross-section. He also 

presented an acoustic two-port  model for a catalytic 

converter unit, which takes into account the presence of a 

mean flow , assuming a uniform velocity profile, and the 

presence of a mean pressure gradient [8]. Ih et al. [9] have 

developed analytical solutions for sound propagation in 

capillary cylindrical tubes which assumes a parabolic 

mean axial flow, and neglects the radial component of the 

particle velocity. Jeong and Ih [10] presented numerical 

solutions of the basic governing flow field equations   

taking into account the radial particle velocity. Their 

results showed that the radial velocity has a small but 

noticeable effect on the DPF acoustic behavior. Dokumaci 

[11] extended his earlier work in [7] to the case of 

rectangular narrow tubes with a plug flow. His analysis 

was based on approximate double Fourier sine series 

expansions for the field variables over the channel cross-

section  

Allam and Abom [12,13] presented an approximate 1-

D, two- ports  discrete acoustic model for predicting sound 

transmission losses for an entire diesel particulate filter 

(DPF) unit. Their model was based on an approximate 

treatment of the viscous and thermal losses along the 

narrow channels of the DPF.  Also in this model the steady 

flow resistance was used to calculate equivalent lumped 

acoustic impedance. To include the wave propagation 

effects the monolith was described using coupled wave 

guide model, where coupling is via the porous walls of 

monolith. Darcy's law was used to describe the pressure 

drop in the porous walls. This 1-D wave propagation 

model yielded a constant, frequency independent, 

transmission loss and agreed within 1 dB with measured 

data on a typical  hot filter but for low frequencies 

(<300Hz).    

    Allam and Abom [14] modified their 1D model in 

[13] using the classical (exact) Kirchhoff solution for a 

plane wave propagation in a homogenous , visco-thermal 

fluid in a rigid narrow tube[15]. The modified model 

includes a more detailed account for viscous and thermal 

losses  by solving the convective acoustic wave equations 

for two neighboring channels using Zwikker and Kosten 

theory. It also uses and modifies the analysis followed by 

Dokumaci [8] to account for the effect of wall 

permeability. They used a straightforward linearization 

and segmentation approach to convert the obtained 1-D 

model to a 4-th order (4-port) eigenvalue problem whose 

four eigenvalue are the wave propagation constants. The 

presented results showed a fair agreement with measured 

ones for frequencies up to 1000 Hz for a typical filter at 

operating (hot) conditions.  It is noted that the above 

Allam and Abom [14] model assumes the fields to be 

constant with respect to space but vary harmonically with 

time.  Fayyad [16],   and Hamdan et.al.   [17] built, 

respectively , a four-port and a six-port acoustic models for 

the DPF  following the analysis approach presented in [13, 

14] but taking into account the transverse component of 

gas velocity.  They used  their models to find transmission 

losses and noise reduction factor at relatively low 

temperatures  and presented  results which showed good 

agreement with those presented  in [14].  

  In the present work, the  analysis developed by Allam 

and Abom [14] is modified by considering the effect of 

transverse velocity  and  is employed  to  build a 2-D, six -

port acoustic model for the entire DPF unit  The presented  

model  takes into account field variations both with respect 

to time and the 2-D space which, to the  authors' best 

knowledge, has been ignored in previous models found in 

the open literature. The calculated  results for the acoustic 

transmission losses in a typical hot DPF  obtained using 

the present six -port model, for selected system parameters 

are compared with those presented in [14] using a four-

port model. 

2. Problem Formulation and solution 

  Following the analyses in [13,14], the DPF is divided 

into five parts, as shown in Fig. 1.  These parts are: the 

inlet (IN), narrow pipes with impermeable walls (1) and 

(3), the ceramic section (2), and the outlet section (OUT). 

The DPF may be manufactured from different materials 

(Cordierite or Silicon Carbide for example) and in its most 

common form consists of a substrate of narrow channels. 

Each channel is approximately square in the cross- section 

with a width about (1-2)  and is blocked at one end. 

Adjacent channels have this blockage at alternating  ends. 

With this construction exhaust gas may enter at one end, 

but must pass through the wall of a channel before exiting 

and is thus termed a wall flow device [13,14]. It is clear 

from the above description of the DPF construction that 

the flow in y-direction affects the operation of the DPF, 

i.e. the transverse velocity can have a significant effect on 

the flow characteristics and the 1-D flow approximation   

may not be a realistic one. Therefore, in order to explore 

this affect the present work  considers the flow as 2-D by 

taking  into account the effect of the transverse velocity 

which was ignored in [,1314]. 

 
Figure 1: DPF sections and the 2D flow of gases. 
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3. Derivation of the Governing Equations 

In deriving  the acoustic model for the above described 

DPF unit the following    assumptions, as in [13,14], are 

made:  

 The DPF unit is partially a porous media, 

 The transverse “normal” component of velocity , 

unlike the models in  [13,14], will   not be neglected: 

i.e. the flow is treated as a 2-D one.  

 The flow is considered as viscous- thermal, 

incompressible, laminar, steady  and  a Newtonian 

ideal gas. 

 Chemical reactions are neglected, and pressure, 

temperature, velocities, and density variations are 

considered to vary harmonically in both time and the 

2-D space. 

  By considering the field to be 2-D instead of 1-D, the 

describing field Navier – stocks (momentum), continuity, 

energy and state equations used in [14], become: 

 

A. Navier Stocks equations:     
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B. Continuity equation: 
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C.  Energy equation 
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D. State equation: 

    With the assumption of ideal gas, the linearized sate 

equation (linearized ideal gas law) takes the form [14]: 

 

,
0

0






























oj

jj

jJ

j

j
T

T

TR

p 


 
(6) 

where  

( , , )j j x y t   

),,( tyxTT jj   
(7) 

),,( tyxPP jj   

x, y denote, respectively , the longitudinal  and 

transverse channel axes, u, v are the acoustic particle 

velocities in , respectively, the x and y directions ,  and j = 

1, 2 represent the inlet and outlet pipes, respectively. Also 

p, T and ρ are the acoustic pressure, temperature and 

density, respectively, μ is the shear viscosity coefficient, 

kth is the thermal conductivity of the fluid, R is the gas 

constant, Cp is the specific heat coefficient at constant 

pressure, P0, T0 and ρ0 denote the ambient pressure, 

temperature and density, respectively, U0, V0 denote the 

axial mean flow velocity  and transverse velocity 

respectively, and 2

s  denotes the Laplacian over the 

channel cross-section. 

 To describe the coupling between neighboring 

channels (which describes the porosity of diesel particulate 

filter) Darcy’s law is applied to the fluctuating fields [14]: 

 

wwuRpp  21
 (8) 

where a subscript w refers to wall, uw is the acoustic 

velocity through the wall, Rw is the wall resistance, which 

is given by Rw = μwht/σw, μw is the dynamic viscosity, ht  is 

the wall thickness, and σw is the wall permeability. 

4. Approximate Solution 

In order to convert the above nonlinear model into an 

analytically tractable one, the linearization and 

segmentation approach presented in [14] is closely 

followed. Accordingly, and noting that the present model 

is a 2-D one, the following time and 2-D space harmonic 

variations for the fields are assumed: 
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Upon substituting equations (9)-(11) into equations (2)-(5), 

using equation (6) and noting that the assumed equations 

(12)-(19) are linear, , the governing field equations (2)-(5) 

take the linear form 
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It is noted that by setting to zero   in the above equations 

(e.g by neglecting the transverse velocity) the above model 

in equations (21)-(24) reduces to the 1-D developed by 

Allam and Abom [14].  

In order to develop an acoustic model for the DPF unit, 

and to find acoustic impedance, transmission losses, and 

other needed parameters such as noise reduction factor, 

equations (21) to (23) must be solved  for the variables  and   

These four, homogenous, coupled linear equations with four 

variables  constitute an eigenvalue problem. The condition of 

a non- trivial solution to these equations   leads to a 

characteristic frequency equation and associated 

eigenvectors. The eigenvalue problem is obtained as follows, 

(for more details, see [13,14]. First one assumes   
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where 
jjj FHA ,,    and  

jB  are constant coefficients.  Next 

substituting the expressions in equation (24) into equations 

(21)-(23) one obtains 
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Next, following Allam and Abom [14], the following 

Fourier sine series for the field variables H and F are 

assumed: 
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Then upon substituting equations (28) and (29) into 

equations (25)-(27), and, as in [1], averaging the mass 

conservation equation (22), one obtains the following 

eigenvalue problem:  
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which can be written in matrix form ,using the notation in 

[14], as follows: 
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And 
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For a non trivial solution the determinant of the 

coefficients matrix in equation (31)  
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is set to zero, whereby one obtains the following  system 

characteristic frequency equation: 
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The above frequency equation is a 6th order equation 

for the propagation constant Γ which can only be solved 

numerically.  A specially constructed MATLAB program 

was used to solve for the six roots of equation (35) for 

selected values of system parameters. The wave 

propagation constants, which is  dependent on all field 

parameters,  represent two types of waves:  one along the 

positive (forward) and the other is along the negative 

(backward) directions of the pipe  axis and are denoted, 

respectively ,as usual,  by  Γ+, and Γ [13,14]. See figures 

(1) – (4).    

Note that the roots (eigenvalues) of equation (35) are 

complex. The real parts of these wave propagation 

constants represent the attenuation while the imaginary 

parts represent the phase shift. The corresponding three 

complex eigenvectors are given by 
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where  )(xp
  is the acoustics pressure. , 

na
  is the modal 

amplitude,  
n   is the calculated wave propagation 
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constant (eigenvalue) and 2,1,, je nj
, are the 

corresponding components of the 2-D eigenvector, with 

j=1 corresponds to the inlet  and j=2 corresponds to outlet.  

Note that equation (36) represents the sound field (pressure 

fluctuation) in filter section. In addition to equation (36) 

one needs the field volume pressure velocities to calculate 

the sound transmission losses in the filter. The 

corresponding volume pressure velocities  )(ˆ xqn
 are 

obtained, as in [14], by dividing   equation (36) by the 

characteristic wave impedance Z, where
A

c
Z


 , c= speed 

of sound,    mass density of the medium, and A      is 

the cross sectional area of the DPF part. This leads to the 

following expression for the volume pressure 

velocities )(ˆ xqn
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 where   
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, 4  ,  
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<Hj>=4a11/Π
2 .  Finally, to calculate the acoustic 

transmission losses in the DPF unit, one uses equation (36) 

and (37) to formulate the so called the transformation 

matrix
DPFT ,  

  ]ˆ][[ˆ PTq DPF  (38) 

where the  TDPF is a 66 matrix, which is formed as a 

product of the individual 2- port  transfer  matrices  

corresponding to the five segments of the DPF, and takes 

the form [14]. 

 

TDPF = TIN T1 T2 T3 Tout                                                  (39)                                                                                    

 

The acoustic transmission losses TL are then calculated 

using the relation [14] 

 

TL= 20 log ׀TDPF/2(40)                                                        ׀                                                                                            

 

In addition, the noise reduction factor NRF can be 

calculated by using the following equation: 

1

2
12 log20

P

P
LPLPNRF   

(41) 

5. Results and Discussion 

The wave propagation constant n , transmission 

losses TL and the noise reduction factor NRF were 

calculated, for selected system parameters, using equations 

(35), (40) and (41).  A MATLAB program was used to 

carry out all needed calculations. The results obtained 

were for the cases: hot at C0500  and  at 1000 C . For 

the two cases the frequency was varied over the range 

1000400   Hz. Also results were obtained for two 

cases:  one with soot layer and the other with no soot layer. 

Samples of the obtained for different types of DPF are 

displayed in figurers (2) – (14).   

From these figures the following points are made: 

 Both transmission loses and noise reduction factor for 

the typical filter and other types of DPFs tend to 

increase as frequency increases. 

 Figures (2)-(5) show that the wave propagation 

through the DPF unit suffers  both attenuation and 

phasing shift, and both attenuation and phase shift 

decrease as the shear wave number increases.  

 Transmission losses for the case of soot layer 

formation are significantly higher than those with no 

soot layer formation. 

 The present six-port model show similar tends 

concerning transmission losses as those presented in 

[14] using a four-port model. However the present 

six-port model result, which takes into account the 

effect of the field transverse velocity , are in closer 

agreement with the experimental ones presented in 

[14] than the analytical four-port model  results 

presented  obtained in [14] which ignore this effect.  

Therefore one may conclude that ignoring the 

transverse velocity can have a significant effect on the 

evaluation of acoustic transmission losses for a DPF 

unit. 

 
Figure 2: Real part of wave propagation constant Γ, denoted  here 

as g, vs. shear wave number (phase shift), Γ1 and Γ2 propagation 

constants for uncoupled waves, Γ3 and  Γ4 propagation constants 
for coupled waves, Γ5 and Γ6 represent the interfering parts,  time 

and 2-D space harmonic variation, and under hot 

conditions(T=500 ˚C ). 

 
Figure 3: Imaginary part of Γ vs. shear wave number (phase shift), 
Γ1 and Γ2 propagation constants for uncoupled waves, Γ3 and Γ4 

propagation constants for coupled waves, Γ5 and Γ6 represent the 

interfering parts, under hot conditions (T=500 ˚C). 
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Figure 4: Real part of Γ vs. shear wave number, ….Γ1, and--- Γ2 

are propagation constants represent uncoupled waves, ….Γ3, and -

---Γ4 propagation constants for coupled waves, ….Γ5, and -----Γ6 
under hot conditions (T=1000˚C). 

 
Figure 5. Imaginary part of Γ against shear wave number, ----Γ1, 

and--- Γ2 are propagation constants represent uncoupled waves, 

….Γ3, and ----Γ4 propagation constants for coupled waves, ….Γ5, 
and …..Γ6, under hot conditions (T=1000˚C). 

 
Figure 6: transmission losses vs. frequency in the case of hot 
conditions (T=500 C) for typical filter for the case of no soot 

layer, Mach=0.02 and space and time variation case. 

 
Figure 7: Transmission losses vs. frequency in the case of hot 

conditions (T=500C) for typical filter for the case of with soot 

layer, Mach=0.02, and Plane and time variation case.   

 
Figure 8: NRF vs. frequency for typical DPF in the case of hot 

conditions, (With no soot layer). Mach=0.02, in the case of plane 

and time variation. 

 
Figure 9: NRF vs. frequency for typical DPF in the case of hot 
conditions, (With soot layer). Mach=0.02, in the case of plane and 

time variation. 
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Figure (10):  Attenuation against shear number comparison:             

present study,  results in [14] . Hot conditions. 

Figure (11): Phase shift against shear number comparison:                  
present  study, results in [14].  Hot conditions  

.

 
Figure (12): transmission losses against frequency for RC: 200/12 

DPF unit type under the case of hot conditions compared with 

experimental results in [14], present study,   

Experimental results [14]; (with no soot layer), and Mach=0.02. 

 
Figure (13):  transmission losses against frequency for EX: 100/17 

DPF unit type under the case of hot conditions compared with 

experimental results in  [14]. Present study, 

experimental results [14]; (with no soot layer), and 

Mach number=0.02. 

 
Figure 14: Transmission losses against frequency for EX80: 

200/14 DPF unit type under the case of hot conditions compared 

with experimental results in [14].  Present study,               
experimental results [14]; with no soot layer and 

March number =.02. 

6. Conclusion 

An approximate  analytical 2-D,  six-port acoustic  

model for a DPF  unit is presented. The development of 

this approximate model  follows closely the 1-D, four- 

ports analysis by  Allam and  Abom   by taking into 

account the effect of transverse velocity. The results of the 

present study show similar qualitative behavior and a 

significant quantitative  agreement improvement of the 

available experimental  results for a clean ( no soot 

formation)  in the open literature than a four -port model 

and at room temperature only .  Further validation of this 

model is required by comparing its predictions to  those 

obtained using numerical analysis  of the  full governing  

nonlinear field equations  and to results of  tests on  filter 

connected to running real engines  to ensure hot conditions 

and soot layer formation. 
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