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Abstract 

This paper presents a new technique for optimizing manufacturing tolerances. This technique is based on the combination 

of two methods, the goal programing method and the genetic algorithm. Firstly, cubic splines interpolation is used to describe 

machining errors by a set of cubic polynomials. Tool path error, table motion error and tool wear error are considered in this 

study. Then, based on the goal programming method, the optimization problem is established. In order to avoid weighting 

effects in the objective functions, we used a genetic Non-dominated Sorting Genetic Algorithm (NSGA) for the resolution of 

the objective programming problems. A description of optimization processes based on NSGA is presented, and some of the 

genetic operators are explained. As a result, zero percent rejection of machining parts are obtained by this method. In this study, 

only three type of machining errors are considered. 
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1. Introduction 

Currently, Multi-axis machine tools are used in various 

fields of advanced manufacturing, for instance the 

aerospace, the military, the automobile manufacturing and 

other fields. Improving the tools’ machining precision is 

one of the major significant pursuits for industry 

manufactures. Machining errors are investigated and 

divided into two categories, systematic and random errors. 

Then, the compensation method is performed by tool path 

modification [1]. However, only systematic errors are 

compensated in this study. Systematic errors are determined 

[2] based on three stage experimental study. A new 

methodology for error compensation of free-form surface is 

offered [3]. The machined surface is obtained under the base 

of the T-spline surface reconstruction, using the online 

inspection data. Using mirror symmetry model, a 

compensate surface is constructed and used in the CAM 

process for error compensation. However, the impact of 

sampling point’s distributions on the machining precision 

are not showed.  By using an adaptive neuro-fuzzy inference 

system and a neural network system, an intelligent system 

for machine condition monitoring is developed [4]. 

Thermal errors can have significant effects on CNC 

machine tool accuracy. The errors come from thermal 

deformations of the machine elements affected by heat 

sources within the machine structure or from ambient 

temperature change [5]. A test piece is considered in order 

to evaluate thermal errors of five axis machine tools. Also, 

the R-Test measurement system is used in order to inspect 

the thermal comportment of the machine tools which were 

used in thermal test piece machining [6]. However, the R-

Test measurement instruments require experienced 

operators to avoid collusion. In [7] a review of all 

experimental techniques used for temperature measurement 

of machine tools and workpiece, a novel approach for an 

adaptive learning control for thermal error estimation and 

compensation for 5-axis machine tools was adopted [8]. The 

sources of thermal error are presented and discussed, then 

the temperature monitoring technology and thermal 

deformation monitoring technology are presented. Finally, 

a new measurement technology called the “fiber bragg 

grating distributed sensing technology” is introduced for 

heavy-duty CNC machine tools. A technique has been 

developed for the error’s compensation under temperature 

stress on five-axis machine tools [9].  

Tool error is an important factor that affects the quality 

and tolerance of machined parts. Tool errors are classified 

into static and dynamic errors, then error identification 

method based on shape mapping are presented [10]; a new 

prediction model of tool errors is developed based on back 

propagation neural network and genetic algorithm. Based 

on tool error parameters, the machining error are 

determined by using the prediction model, then by adjusting 

the NC code, the tool errors compensation method is carried 

out. However, machine tool errors and lubrication effect are 

not considered. A novel technique to estimate the 

volumetric accuracy of five axis machine tools is presented 

[11]. A spherical deviation measurement method based on 

double ball-bar is proposed. An adaptive machining 

approach by using measured free form deformation data is 

developed [12]. Template tool positions are revised based 
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on information from the real part geometry. A Bezier 

surface is used to project the novel tool positions.  However, 

this approach can be more improved by taken into account 

cutting forces. In order to minimize tool deflection errors, 

genetic algorithm is used to determine the optimized 

machining parameters [13]. Tool wear monitoring 

technique in real time is presented in [14] based on 

ultrasonic system and adaptive neuro-fuzzy inference 

system. 

Many sources of errors contribute in the tool path 

deviation, kinematic and geometric errors contribute with 

large amount of deviations [15]. A new technique for three 

axis machine tools kinematic errors identification is 

proposed, by conducting a series of machining test in order 

to separate geometric errors from profile errors [16]. In 

order to identify geometric errors on three axis machine 

tools, thermo-invariant multi-features bar (MFB) is 

designed and developed [17]. A kinematic model for a 5-

axis machine tool is built in order to identify geometric error 

and setup position error, the methodology to calculate these 

errors is presented [18].  Geometric errors of the two rotary 

axes are identified and compensated in [19] by adopting an 

artifact as the test piece and tough-trigger probe for indirect 

measurement. A new error compensation model is 

developed based on tool path modification. However; we 

notice deviation between the predicted and the measured 

error, this study can be more enhanced by considering other 

source errors, such as thermo-mechanical error. Adopting 

differential motion matrix, a new model to identify position 

independent geometric errors is built in [20]. A geometric 

errors compensation method for large five axis machine 

tools is presented. A laser tracker is used for the machine 

tool tip position measurement; then two position-dependent 

geometric error models of a machine tool are constructed 

based on tool tip measurement. Optimal machine tool 

compensation tables are generated for each model [21]. An 

efficient geometric errors identification method for non-

orthogonal five axis machine tools is considered for the 

coupling relationship of the error parameters [22].  

2. Modeling of machining errors using cubic spline 

Modeling machining errors or any large data set can be 

a very challenging task. Generally, the higher the order of 

polynomial is, the more accurate it is.  However; the 

computation operations on polynomials of high degree 

involve certain problems, it is suitable to use polynomials 

of low degree. In order to achieve the higher accuracy and 

minimize the complexity of computation operations, cubic 

spline is proposed in this paper for machining errors 

modeling instead of polynomials interpolation. 

A spline is a set of polynomials of degree k that are 

smoothly connected at certain data points. At each data 

point, two polynomials connect, and their first derivatives 

(tangent vectors) have the same values. The definition also 

requires that all their derivatives up to the (k − 1)st be the 

same at the point [23]. 

For data set of N points; cubic spline 𝑆𝑘  (𝑥) in [𝑥𝑘 , 𝑥𝑘+1] 
with 𝑘 = 0,… , 𝑁 − 1. Are defined with the following 

steps: 

 

𝑆𝑘(𝑥𝑘) =  𝑦𝑘  

𝑆𝑘(𝑥𝑘+1) =  𝑦𝑘+1 

𝑆′𝑘(𝑥𝑘) =  𝑆′𝑘−1(𝑥𝑘)                                                 (1) 

𝑆′𝑘(𝑥𝑘+1) =  𝑆′𝑘+1(𝑥𝑘+1) 

𝑆′′𝑘(𝑥𝑘) =  𝑆′′𝑘−1(𝑥𝑘) 

𝑆′′𝑘(𝑥𝑘+1) =  𝑆′′𝑘+1(𝑥𝑘+1) 

 

In this work, path errors, tool wear and table movement 

errors are modeled by the cubic spline method. The data set 

used in this study is taken from Ph.D. thesis of (Rahou, 

2010) [24] which include these error measurements. 

Evaluation between cubic spline and Polynomials 

interpolation is also presented to show the advantages of 

modeling by cubic spline in this section. 

2.1. Tool path error modeling   

Figure (1) represents the cutting tool path errors. The 

cubic spline 𝑓1(𝑥) is composed of a set of 24 cubic 

polynomials smoothly connected 

 

Figure 1. Cutting tool path error curve 

𝑓1(𝑥) =

{
 
 

 
 
𝑆0       0 ≤ 𝑥 ≤ 1

𝑆1     1 ≤ 𝑥 ≤ 2
:
:

 𝑆24   24 ≤ 𝑥 ≤ 25

 

  

(2) 

2.2. Table motion errors 

Figure (2) represents the table motion errors. The cubic 

spline 𝑓2(𝑥) of table motion errors is a set of 24 cubic 

equations  



 © 2020 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 14, Number 4  (ISSN 1995-6665) 383 

 

Figure 2. Table motion errors curve 

𝑓2(𝑥) =

{
 
 

 
 

𝑆0      0 ≤ 𝑥 ≤ 1

𝑆1     1 ≤ 𝑥 ≤ 2
:
:

 𝑆24    24 ≤ 𝑥 ≤ 25

 

  

(3) 

2.3. Tool wear error modeling  

As we can see in Figure (3), cubic spline curve and linear 

curve are the same, so it is more practical to work with the 

linear curve rather than the cubic spline curve, especially if 

we know that the spline curve is composed from 39 cubic 

polynomials. 
 

 

Figure 3. Tool wear error curve 

Tool wear error is given by the linear equation (3) 

𝑓3(𝑥) = 0.00066 ∗ 𝑥 − 0.0006 (4) 

As we can see in fig (1) and fig (2) with data set of 25 

points, using polynomials interpolation (for instance 

Lagrange polynomial) will produce a polynomial of 24 

degree, contrary to cubic spline interpolation which 

produced a set of cubic polynomials smoothly connected. 

The highest precision is achieved, with low degree 

polynomials.  

Manufacturing errors are given above by mathematical 

equations. In this paper, an investigation is presented, by 

seeking the optimum amount of each manufacturing error 

so, the sum of these manufacturing errors does not exceed 

the tolerance design equation. 5.  

∑𝑓𝑖(𝑥) ≤ 𝐼𝑇

3

1

 

(5) 

This technique will not only guarantee the conformity of 

all the machined parts; but can be used for errors prediction. 

Goal programming is used to establish the problem, then 

based on genetic algorithm, the problems is solved. 

3. Goal Programming problem formulation  

Based on goal programming, a nonlinear programming 

problem is established. Then, a minimization of the 

weighted sum of deviations from the goals was carried out. 

{
𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞∑ |𝒇𝒊(𝒙) − 𝒈𝒊|

𝑷

𝒊=𝟏

𝑪(𝒙) ≤ 𝒄   (𝐜𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬 )

   

  

(6) 

 

𝑓𝑖(𝑥) : Objective functions 

𝑔𝑖: The goal set for the i-th goal (for i = 1, 2, ..., p); 

𝐶(𝑥): Manufacturing tolerance interval 

𝑐: Design tolerance interval 

By introducing the negative and positive 

deviations 𝑁𝑖 𝑎𝑛𝑑 𝑃𝑖  respectivelly. The system (6) can be 

written as: 

min 𝑍 =∑(𝑤𝑖 ∗ 𝑁𝑖 + 𝑤𝑖 ∗ 𝑃𝑖)

𝑃

𝑖=1

 

  

 

Subject to 

 

 (7) 

{
 
 

 
 ∑𝑎𝑖𝑗𝑥𝑗 − 𝑃𝑖

𝑃

𝑖=1

+ 𝑁𝑖 = 𝑔𝑖     𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑔𝑜𝑎𝑙 𝑖      (𝑖 = 1,2,……𝑝) 

𝑥𝑗 ≥ 0   (𝑓𝑜𝑟 𝑗 = 1,2, ……𝑛)

𝑃𝑖 × 𝑁𝑖 = 0   (𝑓𝑜𝑟 𝑖 = 1,2,……𝑛)
𝑃𝑖 ≥ 0,   𝑁𝑖 ≥ 0

     

 

In our case, positive deviations are minimized in order 

not to violate the tolerance interval.  Which lead us to 

rewrite the equation (5) to the next system 

min∑𝑤𝑖𝑃𝑖

4

1

 

Subject to  

𝑓1(𝑥) − 𝑃1 = 𝐼𝑇 

𝑓2(𝑥) − 𝑃2 = 𝐼𝑇 

𝑓3(𝑥) − 𝑃3 = 𝐼𝑇 

∑𝑓𝑖

3

1

(𝑥) − 𝑃4  = 𝐼𝑇 

𝑃𝑖 ≥ 0 
 

 

 

 

 

(8) 

Where 

𝑤𝑖 is the weight factors fixed by the user which 

represents the goals preference and the sum equal to one. 

𝑁𝑖𝑎𝑛𝑑 𝑃𝑖 are the negative and the positives deviations 

from the goal respectively. 

𝐼𝑇  is the tolerance interval  

Note that in the system (8), the negative deviations 𝑁𝑖 in 

the constraints are eliminated by using a (≤) relation. 

4. Non-dominated sorting genetic algorithm  

The selection operation is the only difference between 

the non-dominated sorting genetic algorithm (NSGA) and 

simple genetic algorithm. The crossover operator and 
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mutation operator work the same way. NSGA used in this 

study is a real parameters GA. 

Classifying the population into 𝑃𝑘 classes based on non-

domination is the first stage of NSGA. 

 𝑃 = ⋃ 𝑃𝑘
𝑛
𝑘=1   (9) 

𝑛: The total number of fronts 

4.1. Non-dominated sorting of a population: 

Considering a population P of N solutions, the following 

procedure could be used to deduce the classes non-

dominated of solutions: 

 Step 0: set all non-dominated sets 𝑃𝑘 = ∅; (k=1, 2...). 

For non-domination level 𝑘 = 1 

 Step 1: set counter solution 𝑖 = 1, 𝑃′ = ∅. 
 Step 2: for a solution 𝑗 ∈ 𝑃 (𝑗 ≠ 𝑖). If solution 𝑗 dominate 

solution 𝑖, go to step 4. 

 Step 3: Increase j and go to step 2. Otherwise set 𝑃′ =
𝑃′ ∪ {𝑖} 

 Step 4: increment𝑖. If 𝑖 ≤ 𝑁 go to step 2. Otherwise stop 

and declare 𝑃’ as the non-dominated set. 

 Step 5: update 𝑃𝑘 = 𝑃′ and 𝑃 = 𝑃/𝑃’ 
 Step 6: if 𝑃 ≠ ∅; increment 𝑘 and go to Stage1. If not, 

stop and announce all non-dominated sets 𝑃𝑘 

This procedure can handle any numbers of objectives, 

maximization or minimization problems can be treated. The 

next step is to assign a value for each solution of these 

classes. 

4.2. Sharing method 

For a given front 𝑘, which contain 𝑛 𝑘  solutions; each 

have a fitness value equal to 𝑓𝑘, the sharing method is 

explained as follow: 

Firstly, the sharing functions value is calculated by using 

the following function [25] 

𝑆ℎ(𝑑𝑖𝑗)

= {1 − (
𝑑𝑖𝑗

𝜎𝑠ℎ𝑎𝑟𝑒
)

2

,       𝑖𝑓 𝑑𝑖𝑗 ≤ 𝜎𝑠ℎ𝑎𝑟𝑒

0;                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

(10) 

 

The parameter 𝑑𝑖𝑗  is the Euclidian distance between any 

two solutions in the populations in the same front. 𝑑𝑖𝑗  Is 

determined as follows: 

𝑑𝑖𝑗 = √∑ (
𝑥𝑘
𝑖 −𝑥𝑘

𝑗

𝑥𝑘
𝑚𝑎𝑥−𝑥𝑘

𝑚𝑖𝑛)

2

𝑃
𝑝=1   

(11) 

𝑃 : The problem variables. Then, a niche count 𝜂𝑐𝑖 is 

calculated for the 𝑖 − 𝑡ℎ solution as follows: 

𝜂𝑐𝑖 =∑𝑆ℎ(𝑑𝑖𝑗)

𝑁

𝑗=1

 

 

(12) 

 

The final step is to calculate the shared fitness value as 

follows  

𝑓′𝑖 =
𝑓𝑖 
𝜂𝑐𝑖⁄  

(13) 

The minimum shared fitness in this class is 

noted 𝑓′𝑘
   𝑚𝑖𝑛. In order to proceed the next non-dominated 

class, the assigned fitness value is equal to: 

𝑓𝑘+1 = 𝑓′𝑘
   𝑚𝑖𝑛 − 𝜖 (14) 

 

𝜖: is small positive number.   

4.3. reproduction operator 

Making several copies of good solutions and removing 

bad solutions from the population is the main goal of the 

selection operator while keeping population size constant, 

Based on the dummy fitness value and stochastic remainder 

proportionate selection. 

4.4. Crossover and mutation operators:  

As mentioned above, selection operator cannot produce 

any new solutions, it only duplicate good solutions at the 

expense of bad solutions. Crossover and mutation operators 

are responsible to create new solutions. 

For crossover operation, two solutions are picked (called 

parent solutions) from the mating pool at random and 

crossed with a probability 𝑝𝑐 = 0.9.  in this study simulated 

binary crossover (SBX) operator is used. The procedure of 

computing children solutions 𝑥1 and 𝑥2 from the parent 

solutions 𝑦1 and 𝑦2 is described below [25]:  

Step 1: choose a random number 𝑢 ∈ [0; 1] 
Step 2: calculate 𝛽𝑞𝑖  using the next equation: 

𝛽𝑞𝑖 = 

{
 
 

 
 (2𝑢𝑖)

1
𝜂𝑐+1   ;            𝑖𝑓 𝑢𝑖 ≤ 0.5

(
1

2(1 − 𝑢𝑖)
)

1
𝜂𝑐+1

  ;       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

 

 

(15) 

𝜂𝑐  : distribution index. In this study, 𝜂𝑐  is fixed 20.  

Step 3: the children solutions are created using the 

following equations 

𝑥1 = 0.5[(1 + 𝛽𝑞𝑖) 𝑦1 + (1 − 𝛽𝑞𝑖) 𝑦2] (16) 

𝑥2 = 0.5[(1 − 𝛽𝑞𝑖) 𝑦1 + (1 + 𝛽𝑞𝑖) 𝑦2] (17) 

Using the above step by step, the children solutions are 

created. Note that the two children solutions are symmetric 

about the parent solutions. 

Polynomial mutation [25] is used in this study to create 

a new solution 𝑧𝑖 from the parent solution 𝑥𝑖; the following 

step by step is used for a mutation probability 𝑝𝑚 = 0.1: 

Step 1: create a random number 𝑢 ∈ [0; 1] 
Step 2: calculate the parameters 𝛿𝑖 as fallows: 

𝛿𝑖

=

{
 
 

 
 (2𝑢𝑖)

1
𝜂𝑚+1 − 1                                   if 𝑢𝑖 < 0.5

1 − [2 (1 − 𝑢𝑖)
1

𝜂𝑚+1 − 1]

1
𝜂𝑚+1

       if 𝑢𝑖 ≥ 0.5 

 

 

(18

) 

     

𝜂𝑚 : distribution index for mutation. 𝜂𝑚 = 150  is fixed 

in this study. 

Step 3: calculate Zi by the relation (19):   

𝑧𝑖 =  𝑥𝑖 + 𝛿𝑖(𝑥𝑖
𝑢 − 𝑥𝑖

𝑙 ) (19) 

𝑥𝑖
𝑢𝑎𝑛𝑑𝑥𝑖

𝑙 Are the superior and inferior bounds of 

parameter 𝑥𝑖. 

5. Problem description and optimization problem 

In this paper, the above multi objective GA is used in 

order to solve goal programming problem in system 8, 

however some changes are needed for this purpose. 

Minimizing the positive deviations 𝑃𝑖  in system 8, with 

𝑃𝑖 ≥ 0 generate two scenarios: 

If 𝑃𝑖 = 0  ⇒  𝑓𝑖(𝑥) = 𝐼𝑇  ⇒  𝑓𝑖(𝑥) − 𝐼𝑇 = 0. 

Or 𝑃𝑖 > 0  ⇒  𝑓𝑖(𝑥) − 𝑃𝑖 = 𝐼𝑇  ⇒  𝑓𝑖(𝑥) − 𝐼𝑇 = 𝑃𝑖. 
We can reformulate system 8 as: 
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𝑚𝑖𝑛 < 𝑓𝑖 (𝑥) − 𝐼𝑇 > (20) 

With the bracket operator < > returns the operand value 

if it is positive, otherwise returns 0. By this way a GP 

problem is rewritten to multi objective problem, and we can 

use NSGA to solve it. The advantage is that we can get 

several solutions to the GP problem simultaneously which 

are not subjective to the user. We use a population of size 

50 for a 50 generation. 

RAHOU et all [2] consider the following part as a test 

piece Figure. 4. The tolerance interval is fixed at 0.02 (IT = 

0.02). The results of the following system (21) are shown in 

Figure 5 and listed in the table. 1. 

𝑚𝑖𝑛 < 𝑓1 (𝑥1) − 0.02 > 

𝑚𝑖𝑛 < 𝑓2 (𝑥2) − 0.02 > 

𝑚𝑖𝑛 < 𝑓3 (𝑥3) − 0.02 > 

𝑚𝑖𝑛 < 𝑓1 (𝑥1) + 𝑓2 (𝑥2) + 𝑓3 (𝑥3) − 0.02 > 
Subject to 

     1 ≤ 𝑥1 ≤ 25,  1 ≤ 𝑥2 ≤ 25, 1 ≤ 𝑥3 ≤ 40. 

 

 

(21) 

 

Figure 4. test piece 

 

Figure 5. Optimization result

 

Table 1. Optimization result  

𝑥1 𝑥2 𝑥3 𝑓1 (𝑥1) 𝑓2 (𝑥2) 𝑓3 (𝑥3) 
∑𝑓𝑖 (𝑥𝑖)

3

1

  

1 

10 

17 

20 

24 

5 

7 

10 

14 

21 

1 

15 

20 

30 

40 

0 

-0.008 

0.01 

-0.012 

0.005 

-0.008 

0.001 

-0.002 

0.0013 

-0.012 

0 

0.01 

0.012 

0.017 

0.027 

-0.008 

0.003 

0.02 

0.0063 

0.02 

 

We can notice that all the result founded are less then 

IT= 0.02, more on that, the sum of the machining errors is 

less than the IT.  

We can also fix some errors at the minimum, in order to 

get the max of the other errors with the condition that the 

sum of all the machining errors are less than IT. For 

example, we can set tool wear error at 0.02, which mean we 

change the cutting tool when the tool wear error exceeds 

0.02 however, that mean we minimize in the tool life. But 

in the other hand we can permit to maximize the amount of 

the other errors like table motion error, considering the sum 

of all the machining errors are less than or equal to design 

tolerance IT. 

Based on this study and the result listed in the table 1, 

we can see that the workpiece accuracy is more influenced 

by the tool wear error 𝑓3 , approximately by 42% than the 

other errors. 

6. Conclusion 

In this paper, we simultaneously consider tool wear-, 

table motion-, and tool path errors and have addressed the 

accuracy – errors trade off problem for multi-axis machine 

tools. A new methodology is developed in this study for 

optimizing the machining errors of multi-axis machine tools 

and the procedure of reallocating of each machining error. 

This was achieved by optimizing the machining errors and 

taken the design tolerance as hard constraint in order to 

achieve zero percent rejection. The machining errors 

considered in this study mentioned above are modeled 

based on cubic spline interpolation, then based on goal 

programming the optimization problem is formulated. 

Finally, NSGA is used to solve this problem.  The result 

obtained in this study are summarized here: 

 Using cubic spline interpolation for modeling generate 

high accuracy model of machining errors with low 

degree polynomials. 

 It is robust  

 Zero percent rejection of machining parts are obtained 

by this method 

 More complex models for 100% conformity rate by 

including other errors can easily be applied using the 

same framework. 

In terms of shortcomings of the work and areas of future 

studies, the following issues would be recommended for 

further studies: 

This work considers only tool path-, tool wear-, and table 

motion errors. Extension to the other errors such as thermal 

induced errors should be considered in future research. 
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