Performance Modeling and Estimation of Serial System Exhibiting k-out-of-n: G Scheme with Controller Failure

Hamisu Ismail Ayagi ${ }^{1,2, *}$, Zhong Wan ${ }^{1}$, Ibrahim Yusuf ${ }^{3}$,
Abdullah Sanusi ${ }^{4}$, Mus'abu Musa ${ }^{5}$
${ }^{1}$ School of Mathematics and Statistics, Central South University, Changsha, China
${ }^{2}$ Department of Mathematics, Yusuf Maitama Sule, University, Kano, Nigeria
${ }^{3}$ Department of Mathematical Sciences, Bayero University, Kano, Nigeria
${ }^{4}$ School of Continuing Education, Bayero University, Kano, Nigeria.
${ }^{5}$ Department of Mathematics, Faculty of Physical Sciences, Kebbi State University of Science and Technology, Aliero, Kebbi State, Nigeria

Received 15 Jan 2023
Accepted 21 Mar 2023

Abstract

The k-out-of-n system is a widely used concept in various fields. The significance of this system lies in its ability to ensure reliability, safety, and continuity of operation in various settings, including home appliances, military equipment, communication networks, and manufacturing systems. The system consists of two subsystems, each of which employs the k-out-of-n: G scheme. Our aim is to estimate the performance of a system that implements a k-out-of-n: G scheme with a controller using Copula's properties. This system is susceptible to two types of failures; partial and complete failures. If the system fails partially, it is repaired using General repair techniques while completely failed state is repaired using Copula repair techniques. The system is investigated using supplementary variable techniques and the Laplace transformation to obtain explicit expressions for availability, reliability, mean time to failure (MTTF), sensitivity, and expected profit functions, all of which are numerically validated. The outcomes/results are displayed in tables and figures, enabling us to draw the appropriate conclusions and offer recommendations. On the basis of numerical results, the conclusions were drawn. The findings of this study will aid maintenance managers in determining the appropriate time and technique for a system's maintenance.

Keywords: Availability, Controller, Exhibiting, Performance, Reliability, System, Scheme.

1. Introduction

Complex systems with numerous components and subsystems are prevalent nowadays. To reliably assess the performance of such systems, it is necessary to understand the nature of each component failure and how they interact. This will aid in the efficiency analysis of the system. In reality, a k-out-of-n system constitutes one of the most important systems. A system having n components can be described as a k-out-of-n system if and when k or more of the components operate. A relatively common sort of redundancy in fault-tolerant systems is the k-out-of-n system structure. It has several uses, such as in commercial systems, armed forces systems, transmission, engineering construction, transport, telecommunications and so on.

Numerous studies on the study of k-out-of-n systems have already been authored due to the wide range of practical applications. To name only a handful; Wu and Cui [23] investigated the dependability of a load-sharing k-out-of-n: G system with interrelated Markov subsystems. Zhao et al. [28] have given analysis of dependability of
multifunctional-out-of-n: F a well-balanced system. Based on record values, Wang et al. [24], offered reliability evaluation of irreparable k-out-of-n: G systems with phased-mission requirements. Ahmadi [1], presented reliability and maintenance modeling for a load-sharing k-out-of-n system with concealed failures. Recently, Zhang et al. [12], provided maintenance analysis of a partial observable k-out-of-n system with load sharing units. A study on the reliability evaluation of a k-out-of-n: F system supported by a multi-state protective device in a shock environment was published in Xian et al. [26]. Dembinska et al [3] investigated the k-out-of-n system's reliability characteristics with a single cold standby unit. They primarily focused on the situation in which the system runs in discrete time. Hu et al. [8] modeled and assessed reliability for uncertain random cold standby k-out-of$\mathrm{m}+\mathrm{n}$: G systems with uncertain parameters based on the system's uncertainty. Cekay [2] focused on the reliability of k-out-of-n systems that are created to carry out a certain task that consists of numerous separate phases. Eryilmaz and Devrim [3, 4] investigated reliability and ideal replacement strategy for a k-out-of-n system subject to

[^0]random shocks. Gao et al. [5] suggested the ideal of an uncertain weighted k-out-of-n system and added an unknown variable to the weighted k-out-of-n system. A k-out-of-n system with multiple sorts of components with discrete independent lifetimes was presented with certain conditional reliability qualities by Jasinski [9]. For a repairable consecutive k-out-of-n: F system, Gokhan et al. [6], presented a time-dependent reliability analysis. An innovative mathematical model for reliability dealing with (k1, k2)-out-of- n : G systems consist of two different sorts of components was put forth by Wang et al. in [25]. The working times of two distinct are considered to be distributed exponentially with various factors. Zhang et al. [12] investigated reliability-based metrics and prognostic issues in a k-out-of-n system where each component's failure process depends only on its inherent qualities but also on the circumstances of its operational environment. Multi-performance weighted multi-state components are defined by Larsen et al. in [10], and two generalized multiperformance multi-state k-out-of-n system models are suggested. Pant et al. [13] investigated the cost rate and availability for a maintained k-out-of-n: G system that encounters numerous failure modes and undergoes routine inspection. In order to support decision-making in the preventive maintenance for unmanned underwater vehicles to monitor the condition of a subsea pipeline, Rykov et al. [15] demonstrated the feasibility of using a mathematical model of a k-out-of-nsystem. Rykov et al. [16] looked at the reliability properties of a k-out-of-n: F system in the scenario where a component failure increases the load on other components, lowering their residual lifetimes. Performance study of serial manufacturing lines with declining product quality was covered by Naebulharam and Zhang in [34]. Human-machine systems reliability: a series-parallel strategy for evaluation and improvement in the field of machine tools was presented by Rosa et al. in [35].

For all industrial systems, failure is inevitable and might take the form of partial or total failure. Any of these failures causes the system to operate less efficiently or to shut down entirely. Certain circumstances call for an immediate return to operation of a completely failed system. When this situation arises, we use the Copula approach. Copula technique is a powerful technique for describing interdependence among variables that has gotten a lot of interest in a lot of domains. The joint lifetime distribution can be generated by modeling component dependence using a Copula function, making it more convenient and adaptable in applications, Nelson [11]. Many researchers have investigated repairable systems using Copula techniques, but little has been provided on the k-out-of-nsystem. To name a few, Gahlot et al. [7] examined a system made up of three identical units using the k-out-of-n: G policy with copula repair methodology. Poonia and Sirohi [14] conducted a costbenefit analysis of a heated standby system using the k-out-of-n: G under catastrophic failure. Yusuf et al. [27] examined a system with five clients and two servers as subsystems 1 and 2 under the k-out-of-n: G and discussed
the consequences of copula repairs. Poonia et al. [15] used the copula repair approach to examine the performance of a warm standby k-out-of-n: G and 2-out-of-4: G system. Singh et al. [22] reported a reliability assessment of a multi-computer system with n clients and the k-out-of-n: G operation scheme with copula repair policy.To analyze the availability of the butteroil production system, Mehta et al [31] developed a mathematical model that took into account the reliability of each subsystem and the system as a whole. The model also considered the time required for repair and maintenance of the subsystems. According to the study, the development of a mathematical model for analyzing the availability of industrial systems such as the butteroil production system is important for improving the reliability and efficiency of such systems, which can lead to cost savings and increased productivity. Kumar and Ram [32] demonstrates the importance of reliability modeling in ensuring the efficient and effective operation of industrial plants such as sugar mills. By using Markov processes to develop reliability models, they were able to analyze the performance metrics of the sugar mill plant and optimize its maintenance schedule, thereby enhancing its reliability and profitability. Yusuf et al [33] highlights the importance of developing effective maintenance strategies for multi-station manufacturing systems to ensure optimal performance and profitability. Kumar and Malik [36] provides a comprehensive analysis of the reliability of a computer system with two cold standby units, taking into account both hardware and software failures, as well as the role of a maintenance server in ensuring system reliability

Many literatures on system performance evaluations employing the k-out-of-n: G scheme redundancy studied traditional measures of repairable systems. Such literatures present different types of system architectures employing the k-out-of-n: G scheme in form of standby, series or parallel configurations. Motivated by the work ofPoonia and Sirohi [14], Poonia et al.[21], Singh and Ram [19], Singh and Gahlot [20], Singh et al. [21] and Singh et al. [22], in which the system design consisting of only one subsystem with a k-out-of-n: G operational scheme. Little is known on performance evaluation of serial system consisting of two subsystems in which each subsystem possesses n units working under k-out-of-n: G scheme attended by a controller whose error can lead to system failure. In this study, the performance of the series-parallel system with two subsystems each using k-out-of-n is analyzed using Copula characteristics: Controller for the G-schema. The objectives are to determine the most efficient repair approach that will increase system effectiveness and the system's most crucial components.

This paper is structured as follows: Section 1 contains the introduction as well as a brief review of the literature. Notations, assumptions, and system description are found in Section 2, whereas model formulation and solutions are found in Section 3. Section 4 discusses system analysis for specific scenarios, while the results were discussed in Section 5 and Section 6 brought the work to a close with references.

2. Notations, Assumptions and Model Description

2.1. Notations

n : number of components in the system.
k : minimum number of components that must work for the k-out-of-n:G systemto work.
q :Time variable on the time axis.
s :Laplace transform variable for each statement in the mathematical equations.
v_{1} : rate of failure of unit in subsystem A
v_{2} :rate of failure of unit in subsystem B
v_{3} :
v_{c} : rate of failure of unit due to controller mistake
$r_{1}(x) / r_{2}(y)$: rate of repair by general of unit in subsystem A/subsystem B
$r_{0}(x) / r_{0}(y) / r_{0}(z):$ rate copula repair for completely failed states
$F_{i}(q)$: For $i=0$ to 15 , the probability that the system is instate S_{i} at any given period of time.
$\bar{F}(s):$ Laplace transformation of state transition probability $F(q)$.
$\mathrm{F}_{\mathrm{i}}(\mathrm{x}, \mathrm{q})$: The probability that a system is in a situation S_{i} where for $i=1 \ldots$, the system is undergoing repair, and the amount of time that has passed since the repair began is given by (x, t) wherexstands for repair and q for time.
$\mathrm{F}_{\mathrm{i}}(\mathrm{y}, \mathrm{q})$: The probability that a system is in state S_{i} where $i=1 \ldots$, indicates that it is undergoing repair, and where the elapsed repair time is given by the expression (y, q), where y denotes the repair process and q the passage of time.
$\mathrm{F}_{\mathrm{i}}(\mathrm{z}, \mathrm{q})$: The probability that a system is in state S_{i} where $i=1 \ldots$, the system is undergoing repair, and where the elapsed repair time is given by the expression (y, q), where y stands for the repair's duration and q for the amount of time.
$E_{p}(t)$: Expected profit over the course of the time interval [0, t$)$.
$\mathrm{H}_{1}, \mathrm{H}_{2}$: Revenue and service cost per unit time, respectively.
$r_{0}(x)$: According to the Gumbel-Hougaard family copula definition, joint probability is expressed as: $c_{\theta}\left(u_{1}(x), u_{2}(x)\right)=\exp \left(x^{\theta}+\left\{\log \phi(x)^{\theta}\right\}^{\frac{1}{\theta}}\right), 1 \leq$ $\theta \leq \infty$. Where $\mu_{1}=\phi(x)$ and $u_{2}=e^{x}$.

2.2. Assumptions

1. All components or subsystems are initially considered to be operational.
2. The controller and two parts from subsystem A and B are required for system operation.
3. Performance of the system is satisfactory when any unit fails.
4. Any unit that malfunctions can be repaired both in operation and in the failed state.
5. It is assumed that all failure rates are constant and have an exponential distribution.

2.3. Model Description

The system under consideration is a serial system consisting of two subsystems. Each of the subsystem has n number of units working under the k-out-of-n: G scheme. The entire system operation is attended or under the control of human controller. Thus, the human controller is in charge of smooth operation of the system. When any of the unit failed in any of the subsystem, it is substituted by any of the standby among the remaining $n-k$ units. The system failure occurred when all n units have failed in any of the subsystem or due to error of human controller. The description of each state is given immediately after figure 1.

Figure 1. Transition diagram of the model
S_{0} : Initial or Perfect state of the system where the system does not experience any failure. The system is up and running.
S_{1} : First unit failure in subsystem A among n units and is under repair by general repair. The system is up and running.
S_{2} : Second unit failure in subsystem A among $(n-k+1)$ units and is under repair by general repair. The system is up and running.
S_{3} : Third unit failure in subsystem A among $(n-k)$ units and is under repair by general repair. The system is up and running.
S_{4} : First unit failure in subsystem B among n units and is under repair by general repair. The system is up and running.
S_{5} : Second unit failure in subsystem B among $(n-k+1)$ units and is under repair by general repair. The system is up and running.
S_{6} : Third unit failure in subsystem B among $(n-k)$ units and is under repair by general repair. The system is up and running.
S_{7} :Previously first unit has failed in subsystem B among n units and is under repair by general repair, followed by another unit failure in subsystem A among n units. The system is up and running.
S_{8} :Previously first unit has failed in subsystem B among n unit and is under repair by general repair, followed by another unit failure in subsystem A among
$(n-k+1)$ units. The system is up and running.
S_{9} :Previously first unit has failed in subsystem B among n unit and is under repair by general repair, followed by another unit failure in subsystem A among $(n-k)$ units. The system is up and running.
S_{10} :Previously first unit has failed in subsystem A among n units and is under repair by general repair, followed by another unit failure in subsystem B among n units. The system is up and running.
S_{11} :Previously first unit has failed in subsystem A among n unit and is under repair by general repair, followed by another unit failure in subsystem B among $(n-k+1)$ units. The system is up and running.
S_{12} :Previously first unit has failed in subsystem A among n unit and is under repair by general repair, followed by another unit failure in subsystem B among $(n-k)$ units. The system is up and running.
S_{13} : System is down due to failure of $(n-k-1)$ units in subsystem A.
S14: System is down due to failure of $(n-k-1)_{\text {units in }}$ subsystem B.
S15: System is down due to human controller error.

3. Formulation of Model and Solution

3.1. Model Formulation

We can derive the following set of different differential equations regulating the current mathematical model using probability of considerations and continuity arguments.

The following partial differential equations obtained via Figure 1 through approach of probability and solving alongside with their corresponding initial and boundary conditions associated with model's development are derived from Figure 1 above and solved using Laplace transformation to generate the state probabilities. (see Yusuf et al. (2022)).

$$
\begin{align*}
& \left(\frac{\delta}{\delta q}+n v_{1}+n v_{2}+v_{c}\right) F_{0}(q)=\int_{0}^{\infty} r_{1}(x) F_{1}(x, q) d x+\int_{0}^{\infty} r_{2}(x) F_{4}(y, q) d y+\int_{0}^{\infty} r_{0}(x) F_{13}(x, q) d x+ \tag{1}\\
& \int_{0}^{\infty} r_{0}(y) F_{14}(y, q) d y+\int_{0}^{\infty} r_{0}(z) F_{15}(z, q) d z \\
& \left(\frac{\delta}{\delta q}+\frac{\delta}{\delta x}+(n-k+1) v_{1}+n v_{2}+v_{c}+r_{1}(x)\right) F_{1}(x, q)=0 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta x}+(n-k) v_{1}+v_{c}+r_{1}(x)\right) F_{2}(x, q)=0 \tag{3}
\end{equation*}
$$

(4)

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta y}+(n-k+1) v_{2}+n v_{1}+v_{c}+r_{2}(y)\right) F_{4}(y, q)=0 \tag{5}
\end{equation*}
$$

$$
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta x}+(n-k-1) v_{1}+v_{c}+r_{1}(x)\right) F_{3}(x, q)=0
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta y}+(n-k) v_{2}+v_{c}+r_{2}(y)\right) F_{5}(y, q)=0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta y}+(n-k-1) v_{2}+v_{c}+r_{2}(y)\right) F_{6}(y, q)=0 \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta x}+(n-k+1) v_{1}+r_{1}(x)\right) F_{7}(x, q)=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta x}+(n-k) v_{1}+r_{1}(x)\right) F_{8}(x, q)=0 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta x}+(n-k-1) v_{1}+r_{1}(x)\right) F_{9}(x, q)=0 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta y}+(n-k+1) v_{2}+r_{2}(y)\right) F_{10}(y, q)=0 \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta y}+(n-k) v_{2}+r_{2}(y)\right) F_{11}(y, q)=0 \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta y}+(n-k-1) v_{2}+r_{2}(y)\right) F_{12}(y, q)=0 \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta x}+r_{0}(x)\right) F_{13}(x, q)=0 \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta y}+r_{0}(y)\right) F_{14}(y, q)=0 \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\delta}{\delta q}+\frac{\delta}{\delta z}+r_{0}(z)\right) F_{15}(z, q)=0 \tag{16}
\end{equation*}
$$

3.2. Boundary conditions

$$
\begin{align*}
& F_{1}(0, q)=n v_{1} F_{0}(q) \\
& F_{2}(0, q)=n(n-k+1) v_{1}^{2} F_{0}(q) \\
& F_{3}(0, q)=n(n-k+1)(n-k) v_{1}^{3} F_{0}(q) \\
& F_{4}(0, q)=n v_{2} F_{0}(q) \tag{20}\\
& F_{5}(0, q)=n(n-k+1) v_{2}^{2} F_{0}(q) \tag{21}\\
& F_{6}(0, q)=n(n-k+1)(n-k) v_{2}^{3} F_{0}(q) \tag{2L}\\
& F_{7}(0, q)=n^{2} v_{1} v_{2} F_{0}(q) \tag{23}\\
& F_{8}(0, q)=n^{2}(n-k+1) v_{1}^{2} v_{2} F_{0}(q) \tag{24}\\
& F_{9}(0, q)=n^{2}(n-k+1)(n-k) v_{1}^{3} v_{2} F_{0}(q) \tag{25}\\
& F_{10}(0, q)=n^{2} v_{1} v_{2} F_{0}(q) \tag{26}\\
& F_{11}(0, q)=n^{2}(n-k+1) v_{1} v_{2}^{2} F_{0}(q) \tag{27}\\
& F_{12}(0, q)=n^{2}(n-k+1)(n-k) v_{1} v_{2}^{3} F_{0}(q) \tag{28}\\
& F_{13}(0, q)=n(n-k+1)(n-k)(n-k-1) v_{1}^{4}\left(1+n v_{2}\right) F_{0}(q) \tag{29}\\
& F_{14}(0, q)=n(n-k+1)(n-k)(n-k-1) v_{2}^{4}\left(1+n v_{1}\right) F_{0}(q) \tag{30}\\
& F_{15}(0, q)=v_{c}\left(1+n v_{1}+n v_{2}+n(n-k+1) v_{1}^{2}+n(n-k+1) v_{2}^{2}+n(n-k+1)(n-k) v_{1}^{3}+n(n-k+1)(n-k) v_{2}^{3}\right) F_{0}(q)(31)
\end{align*}
$$

3.3. Model Solution

With the help of initial condition $F(0)=1$ and other state probabilities are zero at $q=0$, we can obtain the Laplace transforms of equations (1)-(31) as:

$$
\left(s+n v_{1}+n v_{2}+v_{c}\right) \bar{F}_{0}(q)=1+\int_{0}^{\infty} r_{1}(x) \bar{F}_{1}(x, s) d x+\int_{0}^{\infty} r_{2}(y) \bar{F}_{4}(y, s) d y+\int_{0}^{\infty} r_{0}(x) \bar{F}_{13}(x, s) d x+
$$

$$
\begin{equation*}
\int_{0}^{\infty} r_{0}(y) \bar{F}_{14}(y, s) d y+\int_{0}^{\infty} r_{0}(z) \bar{F}_{15}(z, s) d z \tag{32}
\end{equation*}
$$

$\left(s+\frac{\delta}{\delta x}+(n-k+1) v_{1}+n v_{2}+v_{c}+r_{1}(x)\right) \bar{F}_{1}(x, s)=0$
$\left(s+\frac{\delta}{\delta x}+(n-k) v_{1}+v_{c}+r_{1}(x)\right) \bar{F}_{2}(x, s)=0$
$\left(s+\frac{\delta}{\delta x}+(n-k-1) v_{1}+v_{c}+r_{1}(x)\right) \bar{F}_{3}(x, s)=0$
$\left(s+\frac{\delta}{\delta y}+(n-k+1) v_{2}+n v_{1}+v_{c}+r_{2}(y)\right) \bar{F}_{4}(y, s)=0$
$\left(s+\frac{\delta}{\delta y}+(n-k) v_{2}+v_{c}+r_{2}(y)\right) \bar{F}_{5}(y, s)=0$

$$
\begin{align*}
& \left(s+\frac{\delta}{\delta y}+(n-k-1) v_{2}+v_{c}+r_{2}(y)\right) \bar{F}_{6}(y, s)=0 \tag{38}\\
& \left(s+\frac{\delta}{\delta x}+(n-k+1) v_{1}+r_{1}(x)\right) \bar{F}_{7}(x, s)=0 \\
& \left(s+\frac{\delta}{\delta x}+(n-k) v_{1}+r_{1}(x)\right) \bar{F}_{8}(x, s)=0 \\
& \left(s+\frac{\delta}{\delta x}+(n-k-1) v_{1}+r_{1}(x)\right) \bar{F}_{9}(x, s)=0 \tag{40}\\
& \left(s+\frac{\delta}{\delta y}+(n-k+1) v_{2}+r_{2}(y)\right) \bar{F}_{10}(y, s)=0 \tag{41}\\
& \left(s+\frac{\delta}{\delta y}+(n-k) v_{2}+r_{2}(y)\right) \bar{F}_{11}(y, s)=0 \tag{42}\\
& \left(s+\frac{\delta}{\delta y}+(n-k-1) v_{2}+r_{2}(y)\right) \bar{F}_{12}(y, s)=0 \tag{43}\\
& \left(s+\frac{\delta}{\delta x}+r_{0}(x)\right) \bar{F}_{13}(x, s)=0 \tag{44}\\
& \left(s+\frac{\delta}{\delta y}+r_{0}(y)\right) \bar{F}_{13}(y, s)=0 \tag{45}\\
& \left(s+\frac{\delta}{\delta z}+r_{0}(z)\right) \bar{F}_{15}(z, s)=0 \tag{46}
\end{align*}
$$

3.4. Laplace transformation of Boundary conditions

$$
\begin{align*}
& \bar{F}_{1}(0, q)=n v_{1} \bar{F}_{0}(s) \tag{48}\\
& \bar{F}_{2}(0, q)=n(n-k+1) v_{1}^{2} \bar{F}_{0}(s) \tag{49}\\
& \bar{F}_{3}(0, q)=n(n-k+1)(n-k) v_{1}^{3} \bar{F}_{0}(s) \tag{50}\\
& \bar{F}_{4}(0, q)=n v_{2} \bar{F}_{0}(s) \tag{51}\\
& \bar{F}_{5}(0, q)=n(n-k+1) v_{2}^{2} \bar{F}_{0}(s) \tag{52}\\
& \bar{F}_{6}(0, q)=n(n-k+1)(n-k) v_{2}^{3} \bar{F}_{0}(s) \tag{53}\\
& \bar{F}_{7}(0, q)=n^{2} v_{1} v_{2} \bar{F}_{0}(s) \tag{54}\\
& \bar{F}_{8}(0, q)=n^{2}(n-k+1) v_{1}^{2} v_{2} \bar{F}_{0}(s) \tag{55}\\
& \bar{F}_{9}(0, q)=n^{2}(n-k+1)(n-k) v_{1}^{3} v_{2} \bar{F}_{0}(s) \tag{56}\\
& \bar{F}_{10}(0, q)=n^{2} v_{1} v_{2} \bar{F}_{0}(s) \tag{57}\\
& \bar{F}_{11}(0, q)=n^{2}(n-k+1) v_{1} v_{2}^{2} \bar{F}_{0}(s) \tag{58}\\
& \bar{F}_{12}(0, q)=n^{2}(n-k+1)(n-k) v_{1} v_{2}^{3} \bar{F}_{0}(s) \tag{59}\\
& \bar{F}_{13}(0, q)=n(n-k+1)(n-k)(n-k-1) v_{1}^{4}\left(1+n v_{2}\right) \bar{F}_{0}(s) \tag{60}\\
& \bar{F}_{14}(0, q)=n(n-k+1)(n-k)(n-k-1) v_{2}^{4}\left(1+n v_{1}\right) \bar{F}_{0}(s) \tag{61}
\end{align*}
$$

$$
\bar{F}_{15}(0, q)=v_{c}\left(1+n v_{1}+n v_{2}+n(n-k+1) v_{1}^{2}+n(n-k+1) v_{2}^{2}+n(n-k+1)(n-k) v_{1}^{3}+n(n-k+1)(n-k) v_{2}^{3}\right) \bar{F}_{0}(s)
$$

Solving equations (32)-(47) simultaneously by substituting equations (48)-(62), we obtain:

$$
\begin{align*}
& \bar{F}_{0}(0)=\frac{1}{G(s)} \\
& \bar{F}_{1}(s)=n v_{1}\left(\frac{1-\bar{s}_{r}\left(s+(n-k+1) v_{1}+n v_{2}+v_{c}\right)}{s+(n-k+1) v_{1}+n v_{2}+v_{c}}\right) \bar{F}_{0}(s) \tag{63}
\end{align*}
$$

$$
\begin{equation*}
\bar{F}_{2}(s)=n(n-k+1) v_{1}^{2}\left(\frac{1-\bar{s}_{r}\left(s+(n-k) v_{1}+v_{c}\right)}{s+(n-k) v_{1}+v_{c}}\right) \bar{F}_{0}(s) \tag{64}
\end{equation*}
$$

$\bar{F}_{3}(s)=n(n-k+1)(n-k) v_{1}^{3}\left(\frac{1-\bar{s}_{r}\left(s+(n-k-1) v_{1}+v_{c}\right)}{s+(n-k-1) v_{1}+v_{c}}\right) \bar{F}_{0}(s)$
$\bar{F}_{4}(s)=n v_{1}\left(\frac{1-\bar{s}_{r}\left(s+(n-k+1) v_{2}+n v_{1}+v_{c}\right)}{s+(n-k+1) v_{2}+n v_{1}+v_{c}}\right) \bar{F}_{0}(s)$
$\bar{F}_{5}(s)=n(n-k+1) v_{2}^{2}\left(\frac{1-\bar{s}_{r}\left(s+(n-k) v_{2}+v_{c}\right)}{s+(n-k) v_{2}+v_{c}}\right) \bar{F}_{0}(s)$
$\bar{F}_{6}(s)=n(n-k+1)(n-k) v_{2}^{3}\left(\frac{1-\bar{s}_{r}\left(s+(n-k) v_{2}+v_{c}\right)}{s+(n-k) v_{2}+v_{c}}\right) \bar{F}_{0}(s)$
$\bar{F}_{7}(s)=n^{2} v_{1} v_{2}\left(\frac{1-\bar{s}_{r}\left(s+(n-k+1) v_{1}\right)}{s+(n-k+1) v_{1}}\right) \bar{F}_{0}(s)$
$\bar{F}_{8}(s)=n^{2}(n-k+1) v_{1}^{2} v_{2}\left(\frac{1-\bar{s}_{r}\left(s+(n-k) v_{1}\right)}{s+(n-k) v_{1}}\right) \bar{F}_{0}(s)$
$\bar{F}_{9}(s)=n^{2}(n-k+1) v_{1}^{3} v_{2}\left(\frac{1-\bar{s}_{r}\left(s+(n-k-1) v_{1}\right)}{s+(n-k-1) v_{1}}\right) \bar{F}_{0}(s)$
$\bar{F}_{10}(s)=n^{2} v_{1} v_{2}\left(\frac{1-\bar{s}_{r}\left(s+(n-k+1) v_{2}\right)}{s+(n-k+1) v_{2}}\right) \bar{F}_{0}(s)$
$\bar{F}_{11}(s)=n^{2}(n-k+1) v_{1} v_{2}^{2}\left(\frac{1-\bar{s}_{r}\left(s+(n-k) v_{2}\right)}{s+(n-k) v_{2}}\right) \bar{F}_{0}(s)$
$\bar{F}_{12}(s)=n^{2}(n-k+1)(n-k) v_{1} v_{2}^{3}\left(\frac{1-\bar{s}_{r}\left(s+(n-k-1) v_{2}\right)}{s+(n-k-1) v_{2}}\right) \bar{F}_{0}(s)$
$\bar{F}_{13}(s)=n^{2}(n-k+1)(n-k)(n-k-1) v_{1}^{4}\left(1+n v_{2}\right)\left(\frac{1-\bar{s}_{r_{0}}(s)}{s}\right) \bar{F}_{0}(s)$
$\bar{F}_{14}(s)=n^{2}(n-k+1)(n-k)(n-k-1) v_{2}^{4}\left(1+n v_{1}\right)\left(\frac{1-\bar{s}_{r_{0}}(s)}{s}\right) \bar{F}_{0}(s)$
$\bar{F}_{15}(s)=v_{c}\left\{\begin{array}{l}1+n v_{1}+n v_{2}+n(n-k+1) v_{1}^{2}+n(n-k+1) v_{2}^{2} \\ +n(n-k+1)(n-k) v_{2}^{3}+n(n-k+1)(n-k) v_{1}^{3}\end{array}\right\}\left(\frac{1-\bar{s}_{r_{0}}(s)}{s}\right) \bar{F}_{0}(s)$

Where;

$$
G(s)=\left\{\begin{array}{l}
\left(s+n v_{1}+n v_{2}+v_{c}\right)-n v_{1} \bar{s}_{r}\left(s+(n-k+1) v_{1}+n v_{2}+v_{c}\right) \\
-n v_{2} \bar{s}_{r}\left(s+(n-k+1) v_{2}+n v_{1}+v_{c}\right)- \\
v_{c}\left\{\begin{array}{l}
1+n v_{1}+n v_{2}+n(n-k+1) v_{1}^{2}+n(n-k+1) v_{2}^{2} \\
+n(n-k+1)(n-k) v_{2}^{3}+n(n-k+1)(n-k) v_{1}^{3}
\end{array}\right\}-\bar{s}_{r_{0}}(s)- \\
n(n-k+1)(n-k)(n-k-1) v_{1}^{4}\left(1+n v_{2}\right) \bar{s}_{r_{0}}(s)- \\
n(n-k+1)(n-k)(n-k-1) v_{2}^{4}\left(1+n v_{1}\right) \bar{s}_{r_{0}}
\end{array}\right\}
$$

The following are the Laplace transformations of the probabilities that the system is up and failing at any given time:

$$
\left.\begin{array}{l}
\bar{F}_{u p}(s)=\left\{\begin{array}{l}
\bar{F}_{0}(s)+\bar{F}_{1}(s)+\bar{F}_{2}(s)+\bar{F}_{3}(s)+\bar{F}_{4}(s)+\bar{F}_{5}(s)+ \\
\bar{F}_{6}(s)+\bar{F}_{7}(s)+\bar{F}_{8}(s)+\bar{F}_{9}(s)+\bar{F}_{11}(s)+\bar{F}_{12}(s)
\end{array}\right\} \\
\bar{F}_{u p}(s)=\frac{1}{G(s)}\left\{\begin{array}{l}
1+n v_{1}\left(\frac{1-\bar{s}_{r}\left(s+y_{1} v_{1}+n v_{2}+v_{c}\right)}{s+y_{1} v_{1}+n v_{2}+v_{c}}\right)+n v_{2}\left(\frac{1-\bar{s}_{r}\left(s+y_{1} v_{2}+n v_{1}+v_{c}\right)}{s+y_{1} v_{2}+n v_{1}+v_{c}}\right)+ \\
n(n-k+1)(n-k) v_{1}^{3}\left(\frac{1-\bar{s}_{r}\left(s+y_{3} v_{1}+v_{c}\right)}{s+y_{3} v_{1}+v_{c}}\right)+n(n-k+1) v_{1}^{2}\left(\frac{1-\bar{s}_{r}\left(s+y_{2} v_{1}+v_{c}\right)}{\left(s+y_{2} v_{1}+v_{c}\right)}\right.
\end{array}\right)+ \tag{79}\\
n(n-k+1) v_{2}^{2}\left(\frac{1-\bar{s}_{r}\left(s+y_{2} v_{2}+v_{c}\right)}{\left(s+y_{2} v_{2}+v_{c}\right)}\right)+n(n-k+1)(n-k) v_{2}^{3}\left(\frac{1-\bar{s}_{r}\left(s+y_{3} v_{2}+v_{c}\right)}{\left(s+y_{3} v_{2}+v_{c}\right)}\right)+ \\
n^{2} v_{1} v_{2}\left(\frac{1-\bar{s}_{r}\left(s+y_{1} v_{1}\right)}{\left(s+y_{1} v_{1}\right)}\right)+n^{2}(n-k+1) v_{1}^{2} v_{2}\left(\frac{1-\bar{s}_{r}\left(s+y_{2} v_{1}\right)}{\left(s+y_{2} v_{1}\right)}\right)+ \\
n^{2} y_{1} y_{2} v_{1}^{3} v_{2}\left(\frac{1-\bar{s}_{r}\left(s+y_{1} v_{1}\right)}{\left(s+y_{1} v_{1}\right)}\right)+n^{2} v_{1} v_{2}\left(\frac{1-\bar{s}_{r}\left(s+y_{1} v_{2}\right)}{\left(s+y_{1} v_{2}\right)}\right)+ \\
n^{2} y_{1} v_{1} v_{2}^{2}\left(\frac{1-\bar{s}_{r}\left(s+y_{2} v_{2}\right)}{\left(s+y_{2} v_{2}\right)}\right)+n^{2} y_{1} y_{2} v_{1} v_{2}^{3}\left(\frac{1-s_{r}\left(s+y_{3} v_{2}\right)}{\left(s+y_{3} v_{2}\right)}\right)
\end{array}\right\}
$$

4. Model analysis for specific cases

4.1. System Availability Analysis

4.1.1. Availability Analysis for Copula Repair

To obtain the availability of the system, we set $\overline{S_{r}}(s)=\frac{r}{s+r}, \frac{1-\overline{S_{r}}(s)}{s}=\frac{1}{s+r}, \bar{S}_{r_{0}}(s)=\bar{S}_{\exp \left[x^{\theta}+\{\log \emptyset(x)\}^{\theta}\right]^{1 / \theta}}(S)=$ $\frac{\exp \left[x^{\theta}+\{\log \varnothing(x)\}^{\theta}\right]^{1 / \theta}}{s+\exp \left[x^{\theta}+\{\log \emptyset(x)\}^{\theta}\right]^{1 / \theta}}, v_{1}=0.001, v_{2}=0.002, v_{3}=0.003, v_{c}=0.004$ and all repairs to 1 i.e. $r_{1}(x)=r_{2}(y)=r_{0}(x)=$ $r_{0}(y)=r_{0}(z)=1$ in (79) andinverse Laplace transform, the expression for system availability can be derived as:
$k=5$ and $n=10$.
$F_{u p}(q)=-8.78297971410 e^{-1.01 q}-1.32144550810 e^{-1.004 q}-0.00002277718358 e^{-1.009 q}+$ $0.001539631406 e^{-2.722444532 q}-0.001228275893 e^{-1.056605286 q}-0.000005387798694 e^{-1.028543017 q}$ $+0.9999432223 e^{-0.0006571647939 q}-1.1782236310 e^{-1.008 q}-5.15039221310 e^{-1.005 q}-$ $0.00008350001402 e^{-1.06 q}-0.00006817816256 e^{-1.012 q}-0.00007321001780 e^{-1.014 q}$
$k=7$ and $n=10$.
$F_{u p}(t)=-0.000049925443355 e^{-1.01 q}-0.00001434170084 e^{-1.007 q}-0.00007986225402 e^{-1.004 q}$
$-0.00006907928738 e^{-1.008 q}-5.08659508710 e^{-1.002 q}-6.41052567710 e^{-1.006 q}+$
$0.001539584104 e^{-2.722449048}-0.001077075793 e^{-1.053523254 q}-0.000009301899033 e^{-1.025717638 q}$
$+0.9997609780 e^{-0.0005650608747 q}-3.29467312010 e^{-1.003 q}$
$k=9$ and $n=10$
$F_{u p}(q)=0.001539541320 e^{-2.72249579 q}-0.0009272087420 e^{-1.050509078 q}$
$+0.9995776366 e^{-0.0004723206318 q}-0.00007000156272 e^{-1.004 q}-0.00007602626134 e^{-1.002 q}$
$-0.000006684068885 e^{-1.005 q}-0.00002543552082 e^{-1.006 q}-1.556863191910 e^{-1.001 q}$
$-8.10292383010 e^{-1.00 q}-0.00001166373589 e^{-1.028255022 q}$
Using varying numbers for time $q=0,5,10,20,30,40,50,60,70,80$, and 90 and $k=5,7,9, n=10$. Table 1 and figure 2 show the system's availability when Copula distribution is employed.

Table 1. System Availability against Time for Copula Repair $(k=5,7,9, n=10)$

q	Availability $k=5$ and $n=10$	Availability $k=7$ and $n=10$	Availability $k=9$ and $n=10$
0	1.00000	1.00000	1.00000
5	0.99666	0.99693	0.99721
10	0.99339	0.99413	0.99487
20	0.98689	0.98853	0.99018
30	0.98042	0.98296	0.98551
40	0.97400	0.97742	0.98087
50	0.96762	0.97191	0.97625
60	0.96128	0.96643	0.97165
70	0.95499	0.96099	0.96707
80	0.94873	0.95557	0.96251
90	0.94252	0.95019	0.95798

Figure 2. Availability against time for copula repair for different k
$k=5$ and $n=15$
$F_{u p}(t)=-0.000002093934792 e^{-1.010 q}-0.0001867345851 e^{-1.011 q}-1.06643347510 e^{-1.009 q}-$
$0.0001907126575 e^{-1.024 q}-0.0001442619674 e^{-1.022 q}+0.001575566382 e^{-2.725596607 q}-$
$0.002776372903 e^{-1.085542048 q}-0.000006387507382 e^{-1.043585278 q}+1.001799340 e^{-0.001576067692 q}-$
$6.57148662910 e^{-1.013 q}-0.00006428601144 e^{-1.014 q}-0.000003293119875 e^{-1.020 q}$
$k=5$ and $n=20$
$F_{u p}(q)=-0.5383052153 e^{-1.015 q}-0.0003314923886 e^{-1.016 q}-0.000008055463350 e^{-1.03 q}-$
$0.000001928010504 e^{-1.018 q}+0.001612179406 e^{-2.722702616 q}-0.004859226483 e^{-1.114143520 q}-$
$0.000006999733126 e^{-1.05806026 q}+1.004336720 e^{-0.002847837185 q}-0.0001264481828 e^{-1.019 q}-$
$0.0002498361272 e^{-1.032 q}-4.09567049510 e^{-1.014 q}-0.0003591200178 e^{-1.034 q}$
$k=5$ and $n=25$
$F_{u p}(q)=-0.00001593237792 e^{-1.04 q}-0.0002095015761 e^{-1.024 q}-0.00004245248090 e^{-1.023 q}-$
$0.0005182694978 e^{-1.021 q}-0.000001114711909 e^{-1.019 q}+0.001649707967 e^{-2.722813489 q}-$
$0.007423475294 e^{-1.14241953 q}-0.000007429290047 e^{-1.073618347 q}+1.007506215 e^{-0.004466211615 q}-$
$0.0003864751224 e^{-1.042 q}-0.0005784633122 e^{-1.044 q}-0.00001101625161 e^{-1.02 q}$
Using varying numbers for time $t=0,5,10,20,30,40,50,60,70,80$, and 90 and $k=5, n=15,20,25$. Table 2 and figure 3 show the system's availability when Copula distribution is used.

Table 2. System Availability against Time for Copula Repair ($k=5, n=15,20,25$)

Time	Availability $k=5$ and $n=15$	Availability $k=5$ and $n=20$	Availability $k=5$ and $n=25$
0	1.00000	1.00000	1.00000
5	0.99392	0.99011	0.98532
10	0.98613	0.97614	0.96369
20	0.97071	0.94873	0.92178
30	0.95553	0.92209	0.88170
40	0.94059	0.89620	0.84335
50	0.92588	0.87104	0.80668
60	0.91141	0.84659	0.77160
70	0.89715	0.82282	0.73804
80	0.88313	0.79972	0.70594
90	0.86932	0.77726	0.67544

Figure 3. System availability against time for copula repair for different n

Table 3. Effect of Failure rates on System Availability against Time for Copula Repair ($k=5$ and $n=10$)

Time	Availability	Availability	Availability
	$k=5$ and $n=10$	$k=5$ and $n=10$	
	$v_{1}=0.001, v_{2}=0.002, v_{c}=0.004$	$v_{1}=0, v_{2}=0.002$,	$v_{1}=0, v_{2}=0, v_{c}=0.004$
		$v_{c}=0.004$	
0	1.00000	1.00000	1.00000
5	0.99666	0.99792	0.99853
10	0.99339	0.99678	0.99853
20	0.98689	0.99449	0.99853
30	0.98042	0.99222	0.99853
40	0.97400	0.98995	0.99853
50	0.96762	0.98768	0.99853
60	0.96128	0.98542	0.99853
70	0.95499	0.98316	0.99853
80	0.94873	0.98091	0.99853
90	0.94252	0.97867	0.99853

Table 4. Effect of Failure rates on System Availability against Time for Copula Repair ($k=7$ and $n=10$)

| Time | Availability
 $k=7$ and $n=10$ | Availability
 $k=7$ and $n=10$
 $v_{1}=0.001, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}$
 $=0.004$ | $v_{1}=0, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}=0.004$ | Availability
 $k=7$ and $n=10$
 $v_{1}=0, v_{2}=0, v_{3}$
 $=0.003, v_{c}=0.004$ |
| :---: | :---: | :---: | :---: | :---: | | Availability |
| :---: |

Figure 4. Effect of failure rates on availability against time for copula repair

Figure 5. Effect of Failure rates on availability against time for copula repair

Figure 6. Effect of failure rates on availability against time for copula repair

Table 5. Effect of Failure rates on System Availability against Time for Copula Repair ($k=9$ and $n=10$)

| Time | Availability
 $k=9$ and $n=10$ | Availability
 $k=9$ and $n=10$ | Availability
 $k=9$ and $n=10$
 $v_{1}=0.001, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}$
 $=0.004$ | $v_{1}=0, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}=0.004$ |
| :---: | :---: | :---: | :---: | :---: | | Availability |
| :---: |
| |

Table 6. Effect of Failure rates on System Availability against Time for Copula Repair ($k=5$ and $n=15$)

| Time | Availability
 $k=5$ and $n=15$ | Availability
 $k=5$ and $n=15$
 $v_{1}=0.001, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}$
 $=0.004$ | Availability
 $v_{1}=0, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}=0.004$ | $k=5$ and $n=15$
 $v_{1}=0, v_{2}=0, v_{3}$
 $=0.003, v_{c}=0.004$ |
| :---: | :---: | :---: | :---: | :---: | | Availability |
| :---: |
| |
| 0 |

Table 7. Effect of Failure rates on System Availability against Time for Copula Repair ($k=5$ and $n=20$)

| Time | Availability
 $k=5$ and $n=20$ | Availability
 $k=5$ and $n=20$ | Availability
 $k=5$ and $n=20$
 $v_{1}=0.001, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}$
 $=0.004$ | $v_{1}=0, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}=0.004$ |
| :---: | :---: | :---: | :---: | :---: | | $v_{1}=0, v_{2}=0, v_{3}$
 $=0.003, v_{c}=0.004$ |
| :---: |
| 0 |

Figure 7. Effect of failure rates on availability against time for copula repair

Figure 8. Effect of failure rates on availability against time for copula repair

Figure 9. Effect of failure rates on availability against time for copula repair
Table 8. Effect of Failure rates on System Availability against Time for Copula Repair ($k=5$ and $n=25$)

| Time | Availability
 $k=5$ and $n=25$ | Availability
 $k=5$ and $n=25$ | Availability
 $k=5$ and $n=25$ | Availability
 $v_{1}=0.001, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}$
 $=0.004$ |
| :---: | :---: | :---: | :---: | :---: | | $v_{1}=0, v_{2}=0.002, v_{3}$
 $=0.003, v_{c}=0.004$ |
| :---: |
| 0 |

4.1.2. Availability Analysis for General Repair

After setting $\bar{S}_{r}(s)=\frac{r}{s+r}$ in equation (79) and differentiating the parameters by giving them different values such as $v_{1}=$ $0.001, v_{2}=0.002, v_{3}=0.003, v_{c}=0.004$, and $r=1$, one can obtain availability equation as follows by taking inverse the Laplace transform.
$n=5$ and $k=10$
$F_{u p}(t)=-0.000001037220279 e^{-1.01 q}-0.00002765300049 e^{-1.009 q}-2.43230403410 e^{-1.004 q}$
$-1.48184543810 e^{-1.008 q}-8.00461776210 e^{-1.005 q}-0.0001175229847 e^{-1.006 q}$
$-0.00008061013830 e^{-1.014 q}+0.0009298612384 e^{-1.058869190 q}+0.00001380183429 e^{-1.028562257 q}$
$+0.001945451845 e^{-1.001913048 q}+0.9974159720 e^{-0.0006555053320 q}-0.00007729052319 e^{-1.012 q}$
$n=7$ and $k=10$
$F_{u p}(q)=-0.00005742709299 e^{-1.01 q}-0.00001823289607 e^{-1.007 q}-0.0001362791742 e^{-1.004 q}-$
$0.00008417277226 e^{-1.008 q}-4.10661929310 e^{-1.002 q}-8.64432790910 e^{-1.006 q}$
$+0.001210277173 e^{-1.055906478 q}+0.00003952800804 e^{-1.025766750 q}+0.001812458683 e^{-1.00763138 q}+$ $0.9972355171 e^{-0.0005636345698 q}-0.763337827210 e^{-1.003 q}$
$n=9$ and $k=10$
$F_{u p}(q)=-0.0001098070027 e^{-1.004 q}+0.001495089445 e^{-1.053016691 q}$
$+0.001864779130 e^{-1.001587344 q}+0.9970539656 e^{-0.0004711288983 q}-0.0003495418229 e^{-1.002 q}$
$-0.000009252526030 e^{-1.005 q}-0.00003262731610 e^{-1.006 q}+2.53657401810 e^{-1.001 q}$
$+0.00008714114800 e^{-1.022924836 q}$
Using varying numbers for time $t=0,5,10,20,30,40,50,60,70,80$, and 90 and $k=5,7,9, n=10$. Table 9 and figure 10 show the system's availability when general distribution is used.

Table 9. System Availability against Time for General Repair ($k=5,7,9, n=10$)

Time	Availability $k=5$ and $n=10$	Availability $k=7$ and $n=10$	Availability $k=9$ and $n=10$
0	1.00000	1.00000	1.00000
5	0.99417	0.99445	0.99473
10	0.99090	0.99163	0.99237
20	0.98443	0.98606	0.98770
30	0.97799	0.98051	0.98306
40	0.97160	0.97500	0.97844
50	0.96526	0.96952	0.97384
60	0.95895	0.96407	0.96926
70	0.95268	0.95866	0.96471
80	0.94646	0.95327	0.96017
90	0.94028	0.94791	0.95566

Figure 10. availability against time for general repair
$k=5$ and $n=15$
$F_{u p}(q)=-0.000002552925790 e^{-1.01 q}-0.0002224586594 e^{-1.011 q}-1.33832943210 e^{-1.009 q}$
$-0.0002012394969 e^{-1.024 q}-0.0001536850100 e^{-1.022 q}-0.0007210197116 e^{-1.008784616 q}+$
$0.000002177059185 e^{-1.043593831 q}+0.002121062980 e^{-1.002019480 q}+0.9992551252 e^{-0.1572073393 q}$
$-7.56061563210 e^{-1.013 q}-0.00007297164130 e^{-1.014 q}-0.000003547890347 e^{-1.02 q}$
$k=5$ and $n=20$
$F_{u p}(q)=-0.000006130645274 e^{-1.015 q}-0.002867821534 e-1.116451438 q$
$+0.002264640045 e^{-1.00209752 q}+1.0017688 e^{-0.002840583018 q}-0.0003736463943 e^{-1.016 q}$
$-0.000002136336991 e^{-1.032 q}-4.72033582610 e^{-1.014 q}-0.0003729083184 e^{-1.034 q}$
$-0.000002083973668 e^{-1.058610927 q}-0.000008450136411 e^{1.03 q}$
$k=5$ and $n=25$
$F_{u p}(q)=-0.00001650772111 e^{-1.04 q}-0.0002263652187 e^{-1.024 q}-0.000004607576931 e^{-1.023 q}$
$-0.0005683065141 e^{-1.021 q}-0.000001237684747 e^{-1.019 q}-0.0003991632713 e^{1.042 q}-$
(8)
$0.005478581146 e^{-1.144778627 q}-0.000004195938325 e^{-1.07361567 q}+0.002399040085 e^{-1.002164994 q}$
$+1.0049077793^{-0.00433881174 q}-0.0005957024587 e^{1.044 q}-0.00001215154210 e^{-1.02 q}$
Using varying numbers for time $t=0,5,10,20,30,40,50,60,70,80$, and 90 and $k=5, n=15,20,25$. Table 10 and figure 11 show the system's availability when General distribution is used.

Table 10. System Availability against Time for General Repair $(k=5, n=15,20,25)$

Time	Availability $k=5$ and $n=15$	Availability $k=5$ and $n=20$	Availability $k=5$ and $n=25$
0	1.00000	1.00000	1.00000
5	0.99144	0.98764	0.98286
10	0.98367	0.97371	0.96132
20	0.96833	0.94644	0.91961
30	0.95322	0.91994	0.87972
40	0.93835	0.89417	0.84156
50	0.92372	0.86913	0.80505
60	0.90931	0.84479	0.77013
70	0.89513	0.82113	0.73672
80	0.88116	0.79813	0.70477
90	0.86742	0.77578	0.67419

Figure 11. availability against time for general repair

Table 11. Effect of Failure rates on System Availability against Time for General Repair ($k=5$ and $n=10$)

Time	$\begin{gathered} \text { Availability } \\ k=5 \text { and } n=10 \\ v_{1}=0.001, v_{2}=0.002, v_{3} \\ \\ =0.003, v_{c} \\ \\ =0.004 \end{gathered}$	Availability $\begin{gathered} k=5 \text { and } n=10 \\ v_{1}=0, v_{2}=0.002, v_{3} \\ =0.003, v_{c}=0.004 \end{gathered}$	Availability $\begin{gathered} k=5 \text { and } n=10 \\ v_{1}=0, v_{2}=0, v_{3} \\ =0.003, v_{c}=0.004 \end{gathered}$	Availability $\begin{aligned} & \quad k=5 \text { and } n=10 \\ & v_{1}=0, v_{2}=0, v_{3}=0, v_{c} \\ & =0.004 \end{aligned}$
0	1.00000	1.00000	1.00000	1.00000
5	0.99417	0.99543	0.99601	0.99601
10	0.99090	0.99427	0.99601	0.99601
20	0.98443	0.99200	0.99601	0.99601
30	0.97799	0.98973	0.99601	0.99601
40	0.97160	0.98743	0.99601	0.99601
50	0.96526	0.98522	0.99601	0.99601
60	0.95895	0.98297	0.99601	0.99601
70	0.95268	0.98072	0.99601	0.99601
80	0.94646	0.97848	0.99601	0.99601
90	0.94028	0.97625	0.99601	0.99601

Table 12. Effect of Failure rates on System Availability against Time for General Repair ($k=7$ and $n=10$)

Time	Availability $k=7$ and $n=10$ $v_{1}=0.001, v_{2}=0.002, v_{3}$ $=0.003, v_{c}$ $=0.004$	Availability $k=7$ and $n=10$ $v_{1}=0, v_{2}=0.002, v_{3}$ $=0.003, v_{c}=0.004$	Availability $k=7$ and $n=10$ $v_{1}=0, v_{2}=0, v_{3}$ $=0.003, v_{c}=0.004$	Availability $v_{1}=7$ $=0, v_{2}=0, v_{3}=0, v_{c}$
0	1.00000	1.00000		
5	0.99445	0.99565	1.00000	
10	0.99163	0.99487	0.99601	1.00000
20	0.98606	0.99335	0.99601	0.99601
30	0.98051	0.99183	0.99601	0.99601
40	0.97500	0.99032	0.99601	0.99601
50	0.96952	0.98881	0.99601	0.99601
60	0.96407	0.98730	0.99601	0.99601
70	0.95866	0.98579	0.99601	0.99601
80	0.95327	0.98428	0.99601	0.99601
90	0.94791	0.98278	0.99601	0.99601

Figure 12. Effect of failure rates on availability against time for general repair

Figure 13. Effect of failure rates on availability against time for general repair

Table 13. Effect of Failure rates on System Availability against Time for General Repair ($k=9$ and $n=10$)
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Time } & \begin{array}{c}\text { Availability } \\ k=9 \text { and } n=10\end{array} & \begin{array}{c}\text { Availability } \\ k=9 \text { and } n=10\end{array} & \begin{array}{c}\text { Availability } \\ k=9 \text { and } n=10 \\ v_{1}=0, v_{2}=0, v_{3}\end{array} & \begin{array}{c}\text { Availability } \\ v_{1}=0.001, v_{2}=0.002, v_{3} \\ =0.003, v_{c} \\ =0.004\end{array}\end{array} \begin{array}{c}v_{1}=0, v_{2}=0.002, v_{3} \\ =0.003, v_{c}=0.004\end{array}\right)$

Table 14. Effect of Failure rates on System Availability against Time for General Repair ($k=5$ and $n=15$)

Time	Availability $k=5$ and $n=15$ $v_{1}=0.001, v_{2}=0.002, v_{3}$ $=0.003, v_{c}$ $=0.004$	Availability $k=5$ and $n=15$ $v_{1}=0, v_{2}=0.002, v_{3}$	Availability $k=5$ and $n=15$ $v_{1}=0, v_{2}=0, v_{3}$ $=0.003, v_{c}=0.004$	Availability $k=5$ and $n=15$
				$v_{1}=0, v_{2}=0, v_{3}=0, v_{c}$ $=0.004$
0	1.00000	1.00000	1.00000	
5	0.99144	0.99428	0.99601	1.00000
10	0.98367	0.99120	0.99601	0.99601
20	0.96833	0.98511	0.99601	0.99601
30	0.95322	0.97905	0.99601	0.99601
40	0.93835	0.97302	0.99601	0.99601
50	0.92372	0.96701	0.99601	0.99601
60	0.90931	0.96109	0.99601	0.99601
70	0.89513	0.95517	0.99601	0.99601
80	0.88116	0.94930	0.99601	0.99601
90	0.86742	0.94345	0.99601	0.99601

Figure 14. Effect of failure rates on availability against time for general repair

Figure 15. Effect of failure rates on availability against time for general repair

Table 15. Effect of Failure rates on System Availability against Time for General Repair ($k=5$ and $n=20$)

Time	$\begin{gathered} \text { Availability } \\ k=5 \text { and } n=20 \\ v_{1}=0.001, v_{2}=0.002, v_{3} \\ \\ =0.003, v_{c} \\ \end{gathered}$	Availability $\begin{gathered} k=5 \text { and } n=20 \\ v_{1}=0, v_{2}=0.002, v_{3} \\ =0.003, v_{c}=0.004 \end{gathered}$	Availability $\begin{aligned} & k=5 \text { and } n=20 \\ & v_{1}=0, v_{2}=0, v_{3} \\ & =0.003, v_{c}=0.004 \end{aligned}$	Availability $\begin{aligned} & \quad k=5 \text { and } n=20 \\ & v_{1}=0, v_{2}=0, v_{3}=0, v_{c} \\ & =0.004 \end{aligned}$
0	1.00000	1.00000	1.00000	1.00000
5	0.98764	0.99602	0.99601	0.99601
10	0.97371	0.99593	0.99601	0.99601
20	0.94644	0.99581	0.99601	0.99601
30	0.91994	0.99568	0.99601	0.99601
40	0.89417	0.99556	0.99601	0.99601
50	0.86913	0.99544	0.99601	0.99601
60	0.84479	0.99531	0.99601	0.99601
70	0.82113	0.99519	0.99601	0.99601
80	0.79813	0.99507	0.99601	0.99601
90	0.77578	0.99494	0.99601	0.99601

Table 16. Effect of Failure rates on System Availability against Time for General Repair ($k=5$ and $n=25$)

Time	Availability $k=5$ and $n=25$ $v_{1}=0.001, v_{2}=0.002, v_{3}$ $=0.003, v_{c}$ $=0.004$	Availability $k=5$ and $n=25$ $v_{1}=0, v_{2}=0.002, v_{3}$ $=0.003, v_{c}=0.004$	Availability $v_{1}=5$ and $n=25$ $=0.003, v_{c}=0, v_{3}$	Availability $k=5$ and $n=25$
				$v_{1}=0, v_{2}=0, v_{3}=0, v_{c}$ $=0.004$
0	1.00000	1.00000	1.00000	
5	0.98286	0.99600	0.99601	1.00000
10	0.96132	0.99587	0.99601	0.99601
20	0.91961	0.99567	0.99601	0.99601
30	0.87972	0.99547	0.99601	0.99601
40	0.84156	0.99526	0.99601	0.99601
50	0.80505	0.99506	0.99601	0.99601
60	0.77013	0.99486	0.99601	0.99601
70	0.73672	0.99465	0.99601	0.99601
80	0.70477	0.99445	0.99601	0.99601
90	0.67419	0.99425	0.99601	0.99601

Figure 16. Effect of failure rates on availability against time for general repair

Figure 17. Effect of failure rates on availability against time for general repair

4.2. System Reliability Analysis

Following Chopra and Ram (2020), set all repairs to zero in equation (78)with the same failure rates, $v_{1}=0.001, v_{2}=$ $0.002, v_{3}=0.003, v_{c}=0.004$, and using inverse Laplace transform to get the following system reliability expression for $n=5, k=10$:
$R(q)=0.0001 e^{-0.01 q}+0.0092 e^{-0.012 q}+0.007142857143 e^{-0.006 q}+0.00001153846154 e^{-0.008 q}+$
$2.5 e^{-0.0026 q}+0.0024 e^{-0.009 q}+0.000001 e^{-0.004 q}+2.5 e^{0.03 q}-4.030896775 e^{-0.034 q}+0.012 e^{-0.014 q}+{ }^{(92)}$
$0.00004137931034 e^{-0.005 q}$
$R(q)=0.0002 e^{-0.012 q}-1.5242 e^{-0.0024 q}+2.5 e^{-0.01 q}+0.024 e^{-0.014 q}$
$R(q)=2.5 e^{-0.01 q}+0.00005 e^{0.008 q}+0.012 e^{-0.09 q}-1.51205 e^{-0.014 q}$
$R(q)=0.0001 e^{-0.01 q}+0.0092 e^{-0.012 q}+0.007142857143 e^{-0.006 q}+0.00001153846154 e^{-0.008 q}$
$+2.5 e^{0.026 q}+0.0024 e^{-0.009 q}+0.000001 e^{0.04 q}+2.5 e^{-0.03 q}-4.030896775 e^{-0.034 q}+0.012 e^{-0.014 q}$
$+0.00004137931034 e^{0.005 q}$
$R(q)=0.01212 e^{-0.01 q}+0.01111111111 e^{-0.012 q}+2.5 e^{0.022 q}+0.002448 e^{0.005 q}$
$+2.5 e^{0.026 q}+0.00001269230769 e^{-0.004 q}-4.034134228 e^{-0.03 q}+0.008333333333 e^{0.06 q}+$
$0.0001090909091 e^{-0.008 q}$
Using (92)-(96), one may get different values of reliability for various values of time $t=$ $0,510,20,30,40,50,60,70,80,90$ units of time as presented in table 17 and figure 18.

Time	$\begin{aligned} & \text { Reliability } \\ & v_{1}=0.001, v_{2}= \\ & 0.002, \\ & v_{3}=0.003, v_{c}= \\ & 0.004, \\ & k=5, \text { and } n=10 \end{aligned}$	$\begin{aligned} & \text { Reliability } \\ & v_{1}=0, v_{2}=0.002, \\ & v_{3}=0.003, v_{c}= \\ & 0.004, \\ & k=5, \text { and } n=10 \end{aligned}$	$$	$\begin{aligned} & \quad \text { Reliability } \\ & v_{1}=0.001, v_{2}= \\ & 0.002, \\ & v_{3}=0, v_{c}=0.004, \\ & k=5, \text { and } n=10 \end{aligned}$	$$
0	1.00000	1.00000	1.00000	1.00000	1.00000
5	0.97551	0.97851	0.97977	0.97551	0.99520
10	0.93826	0.95242	0.95859	0.93826	0.97648
20	0.84099	0.89052	0.91411	0.84099	0.91079
30	0.73114	0.82096	0.86776	0.73114	0.82388
40	0.62199	0.74846	0.82051	0.62199	0.72919
50	0.52071	0.67627	0.77315	0.52071	0.63498
60	0.43059	0.60657	0.72629	0.43059	0.54611
70	0.35268	0.54072	0.68039	0.35268	0.46510
80	0.28669	0.47954	0.63584	0.28669	0.39303
90	0.23167	0.42342	0.59289	0.23167	0.33006

Figure 18. Reliability against time for general repair

4.3. Mean Time To Failure (MTTF) Analysis

System MTTF can be attained by setting all the repair rates to zero in equation (79) and finding the limit of the expression as s goes to zero. The expression below gives the MTTF of the system:
$M T T F=\lim _{s \rightarrow 0} \overline{F_{u p}}(s)=\frac{1}{G(s)}\left[1+\left\{\frac{n v_{1}}{y_{1} v_{1}+n v_{2}+v_{c}}\right\}+\left\{\frac{n y_{1} v_{1}^{2}}{y_{2} v_{1}+v_{c}}\right\}+\left\{\frac{n y_{1} y_{2} v_{1}^{3}}{y_{3} v_{1}+v_{c}}\right\}+\left\{\frac{n v_{2}}{y_{1} v_{2}+n v_{1}+v_{c}}\right\}+\right.$ $\left.\left\{\frac{n y_{1} v_{2}^{2}}{y_{2} v_{2}+v_{c}}\right\}+\left\{\frac{n y_{1} y_{2} v_{2}^{3}}{y_{3} v_{2}+v_{c}}\right\}+\left\{\frac{n^{2} v_{2}}{y_{1}}\right\}+\left\{\frac{n^{2} y_{1} v_{1} v_{2}}{y_{2}}\right\}+\left\{\frac{n^{2} y_{1} y_{2} v_{1}^{2} v_{2}}{y_{3}}\right\}+\left\{\frac{n^{2} v_{1}}{y_{1}}\right\}+\left\{\frac{n^{2} y_{1} v_{1} v_{2}}{y_{2}}\right\}+\left\{\frac{n^{2} y_{1} y_{2} v_{1} v_{2}^{2}}{y_{3}}\right\}\right]$

For the simulation of MTTF with respect to v_{1}, v_{1} is varied between 0.001 to 0.10 while $v_{2}=0.002$ and $v_{c}=0.004$ are fixed, for MTTF with respect to v_{2}, v_{2} is varied between 0.001 to 0.10 while $v_{1}=0.001$ and $v_{c}=0.004$ are fixed, MTTF with respect to v_{c}, v_{c} is varied between 0.001 to 0.10 while $v_{2}=0.002$ and $v_{2}=0.002$ are fixed respectively.in (97). one may obtain Table 18 and Figure 19 showing variation of MTTF with respect to v_{1}, v_{2}, v_{3} and v_{c}.

Table 18. Variation of MTTF with respect to Failure rates

Failure rate	MTTF v_{1}	MTTF v_{2}	MTTF v_{3}	MTTF v_{c}
0.001	63.51234	84.73093	63.51234	74.72454
0.002	49.92024	63.51234	63.51234	70.59374
0.003	41.87423	51.52871	63.51234	66.87711
0.004	36.38844	43.61618	63.51234	63.51234
0.005	32.34359	37.94729	63.51234	60.45055
0.006	29.21066	33.66924	63.51234	57.65227
0.007	26.70021	30.31992	63.51234	55.08501
0.008	24.63753	27.62407	63.51234	52.72163
0.009	22.90961	25.40645	63.51234	48.53919
0.010	21.43944	23.54978		4814

Table 19. Computation of System Sensitivity against failure rate parameters

Failure rate	Sensitivity v_{1}	Sensitivity v_{2}	Sensitivity v_{3}	Sensitivity v_{c}
0.001	-18638.94025	-30142.56243	0.00000	-4363.23684
0.002	-10024.14288	-15180.46926	0.00000	-3911.93608
0.003	-6496.229164	-9504.596287	0.00000	-3531.60244
0.004	-4646.290805	-6598.190650	0.00000	-3206.01810
0.005	-3526.805670	-4873.889088	0.00000	-2924.10744
0.006	-2785.484806	-3756.273159	0.00000	-2677.84646
0.007	-2263.731385	-2986.922582	0.00000	-2461.17709
0.008	-1880.055565	-2433.332865	0.00000	-2269.38745
0.009	-1588.414622	-2021.111595	0.00000	-2098.73048
0.010	-1360.889373	-1705.613029	0.00000	-1946.17509

Figure 19. Mean time to failure against failure rate

4.4. System Sensitivity Analysis

To gauge system sensitivity, equation (97)'s partial derivative of MTTF with regard to failure rates is used. Applying the set of parameters as $v_{1}=0.001, v_{2}=0.002, v_{3}=0.003, a n d v_{c}=0.004$ in the partial differentiation of MTTF will yield the system sensitivity as indicated in table 19 and the related graph in figure 20.

Figure 20: MTTF sensitivity failure rates

4.5. Cost Benefit/Benefit Function

If the service facility is always open, the formula below can be used to predict the expected profit for the range $[0,1)$.
$E_{p}(t)=H_{2} \int_{0}^{t} F_{u p}(t) d t-H_{2} t$.
Where H_{1} and H_{2} in the range $[0, \mathrm{t})$ represent the revenue generated and service cost per unit time.

4.5.1. Expected Profit for Copula Repair

Supposing that the failure rates of the system are given as follows: $v_{1}=0.001, v_{2}=0.002, v_{3}=0.003$, one can obtain equation (99) by combining equations (80) and (98) as:

$$
E_{p}(q)=\left\{\begin{array}{l}
1.31618078510^{-1.004 q}+1.16887228510 e^{-1.008 q}+ \tag{99}\\
0.00002257401742 e^{-1.009 q}+0.00007219922840 e^{-1.014 q} \\
+0.00008300200201 e^{-1.006 q}-0.000005655223134 e^{-2.722494532 q} \\
+0.001162473735 e^{-1.056605286 q}+0.000005238282313 e^{-1.028543017 q} \\
-1521.601946 e^{-0.0006571647893 q}+0.00006736972585 e^{-1.012 q} \\
+8.69601951910 e^{-1.01 q}+5.12476837110 e^{-1.005 q} \\
+1521.601097
\end{array}\right\}-H_{2} q
$$

Table 20 and figure 21 are obtained for Copula repairs by using different values of the time variable, such as $t=$ $0,5,10,20,30,40,50,60,70,80,90$, and by taking the inverse Laplace transform of equation (99) with $C_{1}=1$ and $C_{1}=$ $0.6,0.5,0.4,0.3,0.2,0.1$, respectively

Table 20. Expected Profit for Copula Repair

Time	$E_{p}(t)$ $H_{2}=0.6, k$ $=5$ and $n=10$	$E_{p}(t)$ $H_{2}=0.5, k$ $=5$ and $n=10$	$E_{p}(t)$ $H_{2}=0.4, k$ 5 and $n=10$	$E_{p}(t)$ $H_{2}=0.3, k$ $=5$ and $n=10$	$E_{p}(t)$ $H_{2}=0.2, k$ $=5$ and n $=10$	$E_{p}(t)$ $H_{2}=0.1, k=5$ and $n=10$
0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
5	1.99067	2.49067	2.99067	3.49067	3.99067	4.49067
10	3.96580	4.96580	5.96580	6.96580	7.96580	8.96580
20	7.86717	9.86717	11.86717	13.86717	15.86717	17.86717
30	11.70368	14.70368	19.47576	23.40368	20.70368	23.70368
40	15.47576	24.18383	29.18383	27.47576	31.47576	26.70368
50	19.18383	28.82831	34.82831	34.18383	39.18383	35.47576
60	22.82831	33.40962	40.40962	40.82831	46.82831	44.18383
70	26.40962	37.92817	45.92817	57.40962	54.40962	52.82831
80	29.92817	42.38438	51.38438	63.92817	61.92817	61.40962
90	33.38438		60.38438	69.38438	78.92817	

Figure 21. Expected profit against time for copularepair

4.5.2. Expected Profit for General Repair

For General repairs, the expected profit function is obtained by using equations (79) and () and the failure rate parameters of equation (99) and is given by:
$E_{p}(q)=\left\{\begin{array}{l}2.42261358010 e^{-1.004 q}+1.47008476010 e^{1.008 q} \\ +0.00002740634340 e^{-1.009 q}+0.00007949717781 e^{-1.014 q} \\ +0.0001168220524 e^{-1.006 q}+0.00007637403477 e^{1.012 q+} \\ 0.000001026950771 e^{1.01 q}-0.0008781644108 e^{-1.058869190 q} \\ -0.00001341856965 e^{-1.02562257 q}-0.0001941737209 e^{-1.00913048 q} \\ 1521.598564 e^{-0.0006555053320 q}+7.96479379310 e^{-1.005 q} \\ +1521.601095\end{array}\right\}-H_{2} q$
Table 21 and figure 22 are obtained for General repairs by using various values of the time variable, such as $t=$ $0,5,10,20,30,40,50,60,70,80,90$, and by taking the inverse Laplace transform of equation (100) with $C_{1}=1$ and $C_{1}=$ $0.6,0.5,0.4,0.3,0.2,0.1$, respectively.

Table 21. Expected Profit for General Repair

Time	$E_{p}(t)$ $H_{2}=0.6, k$ $=5$ and n $=10$	$E_{p}(t)$ $H_{2}=0.5, k$ $=5$ and $n=10$	$E_{p}(t)$ $H_{2}=0.4, k$ $=5$ and $n=10$	$E_{p}(t)$ $H_{2}=0.3, k$ $=5$ and $n=10$	$E_{p}(t)$ $H_{2}=0.2, k$ $=5$ and $n=10$	$E_{p}(t)$ $H_{2}=0.1, k$ $=5$ and $n=10$
0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
5	1.98143	2.48143	2.98143	3.48143	3.98143	4.48143
10	3.94407	4.94407	5.94407	6.94407	7.94407	8.94407
20	7.82066	9.82066	11.82066	13.82066	15.82066	17.82066
30	11.63271	14.63271	19.38066	23.63271	20.63271	23.63271

Figure 22. Expected profit against time for general repair

5. Discussion of Results

The performance of the system is referred to as availability when repairs are provided to the malfunctioning components/units. To distinguish between the two, we have given the system's availability in two different ways: when repairs come after Copula repairs and when repairs come after General repairs. Additionally, we have investigated availability in two scenarios: $k=$ $5,7,9, n=10$ and $k=5, n=10,15,20,25$, when repairs adhere to Copula and General repair policy. Furthermore, it is essential to consider how each failure rate impacts system availability when the value of n is fixed and k values are varied as well as when the value of k is fixed and n values are modified for both Copula and General repairs.Table 1 and figure 2 provide information on system availability when repairs are carried out using the Copula repair policy and the values of k are varied as $k=5,7,9$ while n is maintained constant at $n=10$. This table and figure show that, in general, the system's availability declines as the value of time t increases. This demonstrates how the graphical representation may be used to predict system performance with accuracy. Furthermore, table 1 and figure 2 show that the operational availability does, however, grow as the value of k increases and n remains constant. But when k is kept constant at $k=5$ and n is altered as $n=15,20,25$, table 2 and figure 3 indicate the availability of the system for Copula repair. We can see from this table and figure that, on average, operational availability declines as time goes on. However, when n increases and k stays constant, operational availability diminishes. Likewise, when the repairs follow General repair and k is varied as $k=5,7,9$, while n is kept constant at $n=10$, the information on system availability is provided in table 9 and figure 10. Similar to the Copula repair scenario, the operational availability of the system increases generally with an increase in the value of time t and also, as the value of k grows with n fixed, the operational availability increases. Similarly, when the repairs obey General repair and k is kept constant $k=5$ while n is modified as $n=15,20,25$, table 10 and figure 11 offer the information on system
availability which decreases with an increase in the value of time t. But as n grows, the operational availability decreases. However, both scenarios have substantially better operational availability for Copula repair than they do for General maintenance. Intriguingly, the operational availability for both Copula and General repair improves as the value of k rises, whereas the operational availability for both types of repairs decreases as the value of n rises. This is premised on the physical fact that a system consisting of k out of n will function if and only if k or more of the components function. These analyses suggest that the system availability can be maximized by using Copula repair and more functional units. Furthermore, tables3,4,5,6,7,8,11,12,13,14,15,16 and their associated figures $4,5,6,7,8,9,12,13,14,15,16,17$ depict the impact of each failure rate on system availability for both Copula and General repairs when n is fixed and k is varied as well as when k is fixed and n is varied.These tables and graphs show that the system is more available when the failure v_{1} and v_{2} are zeros for all the situations. The significance of failure rates v_{3} and v_{c} is explained in this analysis.

Reliability is the probability that a system will continue to work properly without a repair. Here, consideration is also given to how each failure rate affects system reliability and the results are shown in table 17 and figure 18. The table and figure clearly show that in general, system reliability decreases with passing time. This is a direct result of inadequate repair. However, we limit each failure rate to zero in order to see the effect it has on system reliability. We observe from table 17 and figure 18 that the reliability value at $v_{3}=0$ is equal to the cumulative impact of all failure rates on system reliability, which is incredibly low. The importance of any failure rate on system reliability is shown in the value of reliability, i.e., the lower the reliability value, the more critical the failure rate. When the failure rate v_{3} is under control, the system can be as reliable as possible. Maintenance engineers should, therefore, device a method to prevent hub failure.

With the aid of crucial failure metric known as Mean Time To Failure (MTTF), maintenance mangers and system engineers can anticipate how long non-repairable
systems will function before failing. When other parameters are kept constant, the system's MTTF is shown in table 18 and figure 19 as a function of variations in v_{1}, v_{2}, v_{3}, and v_{c}, respectively. The MTTF of the system decreases as v_{1}, v_{2} and v_{c} change, but remains constant as v_{3} changes. It is interesting to see that the MTTF with respect to v_{3} is continuous, indicating that the hub must be in operation at all times. This analysis provides support for the hypothesis that failure rate v_{3} has a greater impact on system reliability.

An important aspect of engineering and scientific analysis is the assessment of sensitivities. Sensitivity analysis gives data on the relative significance of model input variables, and they help with both model validation and optimization. The results of the sensitivity analysis highlight the importance of each component. Table 19 and figure 20 summarize the results of sensitivity analysis studied in this research. This figure and table show that the system is sensitive to the failure rate v_{3}. The sensitivity results reveal that the system effectiveness can be optimized by controlling the failure rate v_{3}. The influence of failure rate v_{3} on system reliability has once again been proven by this sensitivity analysis.

Cost benefit analysis is a generic technique that is widely employed in engineering to evaluate choices/decisions and systems as well as to calculate the value of intangible assets. Cost benefit analysis is used in many industries to estimate the maximum and future worth of a design or system. Generally speaking, an industrial manager will frequently attempt to boost the industry's profit since earnings are determined by both growing or rising revenue and reducing operational costs. Managers typically choose this strategy because of its apparent significance in terms of increasing profitability. When the service cost, H_{2} is modified as $0.6,0.5,0.4,0.3,0.2,0.1$, respectively, and the income generated per unit of time, H_{1}, is fixed at $1, k=5$, and $n=10$. Table 20 and figure 21 show the projected profit from the system when repairs are made after Copula repair, while table 21 and figure 22 show the expected profit after General repair. Table 20 and figure 21 show that over time, the projected profit increases as service costs, H_{2}, fall. The projected profit is often higher when comparing low service ($H_{2}=0.1$) cost to high service $\operatorname{cost}\left(H_{2}=0.6\right)$. Hence, maintenance mangers and system engineers should select the optimal service fee based on the anticipated profit level. The same Copula repair outcome is shown in table 21 and figure 22 for General repair. Though the predicted profit for Copula repair is substantially higher than that for General repair. This analysis supports the claim or premise that Copula repair increases system availability more than General repair.

6. Conclusion

In the present study, the functional behavior of a serial system employing k-out of-n configuration in each subsystem is discussed. The study examined the performance of serial sysem with k-out-of-n units using the features of Gumbel-Hougaard family Copula. The expressions for the system characteristics, such as availability, reliability, mean time to failure (MTTF), MTTF sensitivity, and predicted profit were obtained and
validated through numerical experiments. The impact of the different parameters governing system was examined. Tables and figures are used to present the findings. Based on these findings, the following observations were reached:

1. It was discovered that system availability and predicted profit (cost) for the system rise when Copula repair is employed. Therefore, this repair technique is more effective in raising predicted profit and availability. This has given engineers a new reason to accept copula-based multi-dimension repair.
2. Furthermore, it was demonstrated that controller failure reduces system reliability, mean time to failure and availability, cost, and overall system performance.
3. Furthermore, it was found that low service costs resulted in higher-than-expected profits for the system. Maintenance mangers and system engineers should select the ideal service fee based on the expected profit level.
4. The study suggests that the management should employ additional controller working in parallel or standby with the main controller. This will reduce complete system failure due to controller.
5. Also, it was shown that as the value of k rises, the operational availability for both Copula and General repairs gets better. This analysis suggests that more working units can be invoked.
This research lays the groundwork for maintenance staff and system architects to identify the best types of repairs and system configurations, as well as skilled controllers, to enhance overall efficiency and revenue generation. Furthermore, modifying the models/results described in this work will enable management to avoid incorrect reliability evaluations and incorrect decisionmaking, resulting in wasteful spendings.The current research can extend to address the system with load sharing subsystems, inspection strategies. This topic will be explored more in our future work.

References

[1] R. Ahmadi."Reliability and maintenance modeling for a loadsharing k-out-of-n system subject to hidden failures". Computing IndustrialEngineering, Vol. 150, 2020, 106894.
[2] B. Cekyay. "Reliability of mission-based k-out-of- n systems with exponential phase durations and component lifetimes". Proceeding of the Institution of Mechanical Engineering Part O:Journal of Risk and Reliability, 235(3), 2020, 446457.
[3] A. Dembinska, N.I.Nikolov, E.Stoimenova. "Reliability properties of k-out-of- n systems with one cold standby unit". Computational Applied Math, 388, 2021, 113289.
[4] S. Eryilmaz, Y. Devrim. "Reliability and optimal replacement policy for a k-out-of- n system subject to shocks". Reliability EngineeringSystemSafety, 188, 2019, 393-397.
[5] J.W. Gao, K. Yao, J. Zhou. "Reliability analysis of uncertain weighted k-out-of- n systems". IEEE Trans Fuzzy System 26(5), 2018, 2663-2671.
[6] G.Gökdere, H.K. Tony. "Time-dependent reliability analysis for repairable consecutive $-k$-out-of- n : F system", Statistical Theory and Related Fields, 6:2, 139-147, 2022, https://doi.org/10.1080/24754269.2021.1971489.
[7] M. Gahlot, V.V. Singh, H.I.Ayagi, I.Abdullahi . "Stochastic analysis of a two units' complex repairable system with
switch and human failure using copula approach". Life Cycle Reliability Safety Engineering 9(1), 2020, 1-11
[8] L. Hu, Z. Bai, X. Yang. "Reliability modeling and evaluation of uncertain random cold standby k-out-of- $m+n$: G systems". Journal of Ambient Intelligence Human Computing (2022). https://doi.org/10.1007/s12652-022-04075-6.
[9] K. Jasinski." Some conditional reliability properties of k-out-of- n system composed of different types of components with discrete independent lifetimes". Metrika, 84:1241-1251, 2021. https://doi.org/10.1007/s00184-021-00826-1
[10] E.M. Larsen,Y. Ding, Y.F. Li. "Definitions of generalized multi-performance weighted multi-state K^{-}-out-of-n system and its reliability evaluations". Reliability Engineering System Safety, 199, 2020, 105876.
[11] Nelson, R.B. An Introduction to Copulas, 2nd ed., Springer Publisher, New York: (2006).
[12] N. Zhang, S. Tian, L. Li, Z. Wang, J. Zhang."Maintenance analysis of a partial observable K-out-of- N system with load sharing units", Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2022, https://doi.org/10.1177/1748006X221109351.
[13] H. Pant, S.B. Singh, S. Pant, S. Availability analysis and inspection optimization for a competing-risk k-out-of-n: G system. Int J ReliabSaf, 14(2-3),2020, 168-181.
[14] P.K. Poonia, A.Sirohi. Cost-benefit analysis of a k-out-of-n: G type of warm standby series system under catastrophic failure using copula linguistic. Int J Reliab Risk Saf Theory Appl 3(1), 2020, 35-44.
[15] P.K. Poonia, A.Sirohi, A. Kumar. Cost analysis of a reparable warm standby k-out-of-n: G and 2-out-of-4: G system in the series configuration under catastrophic failure using copula repair, Life Cycle ReliabSaf Eng., Vol. 10(2), 2021, pp. 121133
[16] V. Rykov, O. Kochueva, M. Farkhadov. "Preventive Maintenance of a k-out-of- n System with Applications in Subsea Pipeline Monitoringto Cost-type Criterion." J. Mar. Sci. Eng. 2021, 9, 85.. Mathematics 2021, 9, 2798.
[17] V. Rykov, N. Ivanova, I.Kochetkova I. "Reliability Analysis of a Load-Sharing k-out-of-n System Due to Its Components’ Failure". Mathematics, 2022, 10, 2457.https://doi.org/10.3390/math10142457.
[18] D. K. Rawal, S. K. Sahani, V. V. Singh, A. Jibril "Reliability assessment of multi-computer system consisting n clients and the k-out-of- n : G operation scheme with copula repair policy". Life Cycle Reliability and Safety Engineering. 2021, https://doi.org/10.1007/s41872-022-00192-5.
[19] V.V. Singh, M. Ram, M. Multi-state k-out-of-n-type system analysis,Mathematics in Engineering, Science and Aerospace, Vol. 5(3), 2014, 281-292
[20] V.V. Singh, M.Gahlot, M. Reliability analysis of (n) clients system under star topology and copula linguistic approach, Int. J. Computational Systems Engineering, Vol. 6, No. 3, 2021, 123-133.
[21] V.V. Singh, M.I. Abubakar, K.H. Ibrahim, I. Yusuf.Performance assessment of complex repairable system with n-identical units underk-out-of-n: G scheme and copula linguistic repair approach, International Journalof Quality Reliability and Management. Vol. 39(2), 2021, 367-386
[22] V.V. Singh, A.L.Ismail, S.S. Maiti. Performance assessment of complex system under the k-out-of- n : G type configuration with k consecutive degraded states through copula repair approach, International

Journal of Quality Reliability and Safety Engineering, 2022, DOI: 10.1142/ S0218539321500479
[23] B. Wu, L. Cui. On reliability analysis of a load-sharing k-out-of- n : G system with interacting Markov subsystems. Int J Prod Res 2022; 60: 2331-2345.
[24] G. Wang, R. Peng, L. Xing. "Reliability evaluation of unrepairable k -out-of- n : G systems with phased-mission requirements based on record values". Reliability Engineering Safety 178, 2018, 191-197.
[25] G. Wang, L. Hu, T.Zhang, Y. Wang."Reliability modeling for a repairable (k1, k2) (k1, k2)-out-of-n: G system with phase-type vacation time". Applied Mathematical Modeling, 91(2), 2021, 311321. https://doi.org/10.1016/j.apm.2020.08.071
[26] X. Zhao, B. Dong,X. Wang,Y. Song. Reliability assessment for a k-out-of- n : F system supported by a multi-state protective device in a shock environment". Computers and Industrial Engineering , Vol.171, 2022, 108426, https://doi.org/10.1016/j.cie.2022.108426.
[27] I. Yusuf ,A.L. Lado, M.A. Lawan, U.A. Ali, Sufi N, " Reliability modelling and analysis of client-server using Gumbel-Hougaard family copula". Life Cycle Reliability Safety Engineering, 10(4), 2021, 225-248.
[28] Zhao, X, Wu, C, Wang, X, et al. "Reliability analysis of k-out-of-n: F balanced systems with multiple functional sectors". Applied Math Model, 82, (2020) 108-124.
[29] N. Zhang, Fouladirad, M, Barros, A. "Reliability-based measures and prognostic analysis of a k-out-of-n system in a random environment". European Journal Operational Research 272(3), (2019), 1120-1131.
[30] G. Chopra, M. Ram. Linear consecutive-k -out-of-n: G system reliability analysisJournal of Reliability and Statistical Studies, Vol. 15, Issue 2, 2022, 669-692.doi: 10.13052/jrss0974-8024.15211
[31] M. Mehta, J. Singh, S. Sharma. Availability analysis of an industrial system using supplementary variable technique,Jordan Journal of Mechanical and Industrial Engineering, 12(4), 2018, 245-251.
[32] A. Kumar, M. Ram. Mathematical modelling for reliability measures to sugar mill plant industry, Jordan Journal of Mechanical and Industrial Engineering,Volume 12, Number 4, 2018, 269 - 279.
[33] I. Yusuf, A. Sanusi, N. M. Usman, M. Musa. Copula Approach to Performance Evaluation of Manufacturing System, Jordan Journal of Mechanical and Industrial Engineering, Volume 16, Number 5, 2022, 701-715.
[34] R.Naebulharam and L. Zhang. Performance Analysis of Serial Production Lines with Deteriorating Product Quality. 7th IFAC Conference on Manufacturing Modelling, Management, and Control. International Federation of Automatic Control June 19-21, 2013. Saint Petersburg, Russia.
[35] R.M.Amaya-Toral, M.R.Piña-Monarrez. Reyes-Martínez, R.M.; de la Riva-Rodríguez, J.; Poblano-Ojinaga, E.R.; Sánchez-Leal, J.; Arredondo-Soto, K.C. Human-Machine Systems Reliability: A Series-Parallel Approach for Evaluation and Improvement in the Field of Machine Tools. Appl. Sci. 2022, 12, 1681.
https://doi.org/10.3390/app12031681.
[36] A. Kumar, S. C. Malik, "Reliability modelling of a computersystem with priority to H / W repair over replacement of $\mathrm{H} /$ Wand up-gradation of S / W subject to MOT and MRT", JordanJournal of Mechanical and Industrial Engineering. Vol. 8,No. 4 (2014), 233-241

[^0]: * Corresponding author e-mail: Hamisu@csu.edu.cn.

