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Abstract 

Present study is carried out to examine the effects of Porosity, thermophoresis, and rotation on the unsteady natural 

convective flow of an incompressible, viscous and electrically conducting fluid past an impulsively started vertical plate in a 

porous medium under the influence of a magnetic field with ramped wall temperature condition.  Analytical solution of 

partial differential equations of the model is obtained by the Laplace transform method with the help of the Heaviside step 

function; also the expression for the Sherwood Number, Nusselt Number and Shear stress at the plate is obtained. The 

obtained results are checked against previously published work for special cases of the problem and found to be in excellent 

agreement. The results obtained are shown by graphs. The effect of physical parameters such as M (Magnetic parameter), K 

(Darcy permeability), Sr (Soret number) and Ω (rotation parameter) on these fields are discussed in detail, and it has been 

observed that for both isothermal and ramped temperature plates; primary and secondary fluid velocity attain a different 

maximum value in the vicinity of the plate and then decrease gradually. The conclusions of the study have great applications 

in the field of science and engineering such as in rotating MHD induction machine energy generators, Magnetic field control 

of materials processing systems, planetary and solar plasma fluid dynamics systems, etc. 
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Nomenclature 

D  Mass diffusion coefficient 

mG Mass Grashof number 

rG Thermal Grashof number
 

 Thermal diffusivity 

 K Permeability parameter 

cS Schmidt  number 

't Dimensionless time 

Tk Thermal diffusion ratio 

0u Constant speed of plate 

u    Primary velocity of the fluid 

v’ Dimensionless secondary velocity of the fluid 

* Volumetric coefficient of concentration expansion 

 Kinematic viscosity 

 Dynamic viscosity 

u’ Dimensionless primary velocity of the fluid 

v    Secondary velocity of the fluid 

 g   Acceleration due to gravity 

M    Magnetic field parameter
 

rP    Prandtl number 

rS    Soret number 

 Density of fluid 

TD Thermal diffusion coefficient 

K’   Dimensionless permeability parameter 
 z’ Dimensionless spatial coordinate normal to the plate 

 Volumetric coefficient of thermal expansion 

 Dimensionless temperature 

 Dimensionless concentration 

Ω’ Dimensionless rotation parameter 

 

1. Introduction  

In view of plentiful application in the field of science 

and engineering, such as nuclear reactors, MHD 

generators, space vehicle propulsion, induction pumps and 

oil exploration, some Significant researches have been 

done in the area of MHD flow. The magnetic field can 

control the thermo-physical properties of flow of an 

electrically conducting fluid. (Jaimala et al. [1], T.V. 

Laxmi and B. Shankar [2],Muthucumaraswamy and Prema 

[3], Branover [4],S. Ravi Kumar [5], Osalusi and Sibanda 

[6], Jawarneh et al. [7],Cowling [8]). Also, flow through a 

porous medium have great engineering and geophysical 

applications, viz, in petroleum technology to understand 

the movement of natural gas, oil and water through the oil 
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reservoirs; in chemical engineering for purification and 

filtration process; in agriculture engineering to analyze the 

underground water resources. By virtue of these plentiful 

applications, a number of researchers have studied MHD 

flow with heat and mass transfer through a porous 

medium; a few of them are Singh and Kumar [9],Bala et 

al.[10],Kim [11], Mohammadet al.[12]. 

Moreover, the rotating fluids have their abundant 

geophysical and astrophysical applications. Some natural 

phenomena, such as hurricanes tornadoes, ocean 

circulations currents, etc. imply rotating flows with heat 

and mass transfer. Several books and research articles on 

hydrodynamic characteristics of rotating flows have been 

published:(Owen and Rogers [13], Greenspan [14], 

Jawarneh et al. [15]). 

The temperature gradient difference plays an important 

role and generates the concentration flux inside the fluid, 

and this phenomenon is called Soret effect (Platten [16]). 

A numerical solution of oscillatory chemically-reacting 

MHD natural convection double-diffusive boundary layers 

in a porous medium with Soret and Dufour effects was 

studied by Bhargavaet al.[17].Postelnicu [18] anysyzed the 

Soret and Dufour effects on MHD flow with heat and mass 

transfer by natural convection from vertical surface in a 

porous medium. Postelnicu [19] extended his work and 

analysed the influence of chemical reaction on heat and 

mass transfer by free convection from vertical surface in 

porous media considering the Soret and Dufour effects. 

Some research papers related to Soret effect and free 

convection have been published by Beg et al.[20], Alam 

and Rahman [21], Ibrahim [22], Anil Kumaret al. 

[24]andZiya Uddin and Manoj Kumar [27 & 28]. This 

paper deals with the Soret effect under the temperature 

gradient due to ramped wall temperature condition. 

Influenced by the above-discussed literature and 

applications, I [23] have extended my work from variable 

temperature to ramped wall temperature and compared the 

effect of various flow parameters in case of isothermal and 

ramped wall temperature.The Laplace transform method is 

used to solve the governing partial differential equations of 

the model. The influence of various parameters involved in 

the problem on velocity, temperature and concentration are 

discussed graphically. 

2. Mathematical Calculation 

Let us consider a coordinate system such as an infinite 

plate is lying in 0z   plane and a magnetic field B is 

applied normal to the plate. Both the plate and fluid are in 

a state of rigid body rotation with uniform angular velocity

(0, 0, )     about z - axis. Initially, the plate is at rest 

having a uniform temperature T
and concentration C

. 

At time t> 0, the plate suddenly begins to move vertically 

upward in its own plane in positive x direction with a 

velocity 
ou and concentration are lowered or raised to

pC . 

At the same time the plate temperature is changed to pT (0 

<t <to) and Tp ( t   to). The movement of the plate and the 

free convection causes the fluid motion.Geometry of the 

problem(Imranet al.[25]) is presented in Fig. 1. 

The governing PDEs of the models are non-linear but 

general characteristics of the fluid motion within the 

boundary layer can be analysed by simplified problem 

with some assumptions. 

1. The plate is of infinite extent so all the physical 

variables can be considered as a function of t and z 

only. 

2. All the fluid properties are constants and the variation 

in density is neglected everywhere except in the 

buoyancy term. 

3. The fluid has small value of magnetic Reynolds 

number; hence the induced magnetic field can be 

neglected. 

4. The fluid far away from the plate is undisturbed. 

5. The plate is electrically non-conducting. 

6. No polarization or applied voltages exist. 

The governing equations of a viscous, incompressible 

and electrically conducting fluid under the above made 

assumptions are(Sethet al. [26]): 
2
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Figure 1. Geometry of the Problem 

The initial and boundary conditions are taken as 

       0 0 0t u z, t , v z, t , T z, t T , C z, t C         
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  2
where  and p p o
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For converting the equation into dimensionless form, we use the following non-dimensional parameters and variables- 
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By using Eq. (6), Eqs. (1), (2), (3), (4) and (5) can be written as- 
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On combining Eqs. (7) and (8), we get, 
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Also, the Eq. (11) changes as: 
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For simplification we remove prime ( ' ) and above set of equations changes as 
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Laplace transform method is used to solve the Eqs. 

(14), (15) and (16) with conditions prescribed in Eq. (17). 

Therefore, after applying the Laplace transform to the Eqs. 

(14), (15), (16) and using initial conditions, we get a set of 

equations in z and s as follows: 
2
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Where ( ,  ),V z s  ( ,  )z s and ( ,  )z s are the Laplace 

transform of ( ,  ),V z t  ( ,  )z t and ( ,  )z t respectively. 

By using Eq. (22) into Eq. (18), we get, 
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Here ( 1)H t  is the Heaviside step function, 1L indicates the inverse Laplace transform and    . 1 .Erfc Erf  is the 

complimentary error function. 

Now for finding the concentration profile, putting Eq. (24) into Eq. (19) and using the boundary conditions Eq. (23), we 

get 
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By putting Eq. (24) and Eq. (26) into Eq. (20) and using the boundary conditions (21), we get the velocity profile as 

follows: 
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2.1. Solution for an isothermal plate: 

For the case of an isothermal plate, the solutions for concentration, temperature and velocity profiles are obtained as 

flows: 
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2.2. Skin Friction coefficient, Sherwood Number and Nusselt Number: 

The shear stress is given by 
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If 
x  and y  be the components of shear stress in the primary and secondary directions respectively, then

x

u

z


 


  and

y

v

z


 


  . 

By using non-dimensional parameters given in Eq. (6), the dimensionless stresses are  
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2
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Consider the complex notation i.e.      1 2z', t' z', t' i z', t'    and after omitting the prime ( ' ), the non-

dimensional shear stress changes to: 
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Therefore, the non-dimensional coefficients of skin friction at the plate in complex form is given as 
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Hence, the non-dimensional coefficients of skin friction in the primary and secondary directions respectively can be 

found as: 

 
xf fS Re S  and  

yf fS Im S  

Again, by using Eq. (6), non-dimensional Sherwood and Nusselt number are obtained as follows:  

The rate of change of concentration at the plate i.e. Sherwood number for both the cases are: 
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The rate of change of temperature at the plate i.e. Nusselt number for both the cases are: 
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3. Figures 

 
Figure 2. Primary Velocity profile for K 

 
Figure 3. Secondary Velocity profile for K 

 
Figure 4. Primary Velocity profile for M 

 
Figure 5. Secondary Velocity profile for M 

 
Figure 6. Primary Velocity profile for Ω 

 
Figure 7. SecondaryVelocity profile for Ω 

 
Figure 8. Primary Velocity profile for Sr 

 

Figure 9. Secondary Velocity profile for Sr 
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Figure 10. Concentration profile for Sr 

 
Figure 11. Concentration profile for t 

 
Figure 12. Temperature profile for t 

 
Figure 13.Primary Skin Friction for Ω 

 
Figure 14. Secondary Skin Friction profile for Ω 

 
Figure 15. Sherwood Number profile for isothermal plate 

temperature with Sr 

 
Figure 16. Sherwood Number profile for ramped plate 

temperature with Sr 

 
Figure 17. Nusselt Number profile for ramped plate temperature 

with time 
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Figure 18. Nusselt Number profile for isothermal plate 

temperature with time 

 
Figure 19. Concentration profile for Sc 

 
Figure 20. Scanned graph of Concentration profile when t = 0.2 

at different values of Sc drawn by Muthucumaraswamy and 

Prema[4] 

4. Results and Discussion 

In order to show the physical changes of some 

parameters of interest on the obtained solution, the 

analytical results for velocity, concentration, temperature, 

Skin friction, Sherwood number and Nusselt number are 

shown graphically in Figs.2-20.The Figs.2-9 shows the 

variation in the magnitude of primary and secondary fluid 

velocities in the boundary layer region versus boundary 

layer coordinate for various values of permeability 

parameter K, Soret number Sr, Magnetic parameter M  and 

rotation parameter Ω taking Gr = 5, Gm = 5, t = 0.6, Pr = 

0.71 and Sc = 2.01.For both ramped and isothermal 

temperature plates; it is observed that, primary fluid 

velocity u (velocity along plate) and secondary fluid 

velocity v (velocity transverse to plate) acquire a different 

maximum value in the vicinity of the plate and then 

decrease gradually to approach free stream value. The 

effect of porosity of the medium on the velocity field can 

be shown in Fig. 2 and 3. It is observed that both the 

components of the velocity increase with the increase in 

the permeability parameter K; it is in good agreement with 

the fact that a porous medium with large value of 

permeability parameter will support the movement of the 

fluid through it.Also, the Fig.4 and 5 reveals that an 

increase in the magnetic parameter M can decrease the 

primary and increase the secondary fluid velocities. 

Physically it is due to the fact that if we apply a transverse 

magnetic field towards the flow, it will offer a Lorentz 

force which acts in the transverse direction and hence 

resists the primary flow. Furthermore, the effect of rotation 

parameter can be seen from Fig.6 and 7. It is noticed that 

for both isothermal and ramped temperature plates, the 

primary fluid velocity decreases and the secondary fluid 

velocity increases with increase in the rotation parameter. 

Hence rotation has tendency to accelerate the secondary 

flow and retards the flow in the primary direction. 

Physically it is in good agreement with the Coriolis force 

which has a tendency to enhance the secondary flow and 

suppress the primary flow. It is also evident from Fig.8 and 

9 that the primary as well as secondary fluid velocity 

increases with the increase in Sr. Whereas for both 

isothermal and ramped temperature plates we noticed in 

the Fig.10 and 11 that concentration within the boundary 

layer increases with increase in Sr or t. Also, temperature 

of the system increases with time (Fig.12). For both 

ramped and isothermal temperature plates, the effect of 

different governing parameters on Skin-friction, Sherwood 

number Sh and Nusselt number Nu are shown in Figs. 13-

18. From Fig.13 and 14, it is evident that, the primary skin 

friction i.e. Sfx and magnitude of secondary skin friction 

i.e. Sfy increase with increase in Ω. The rates of mass 

transfer is measured by Sherwood number Sh and Fig. 15 

and 16reveals variation in Sh with the soret number, for 

both isothermal and ramped temperature plates; it is found 

that Sh decreases with the increase in Sr.Nusselt number Nu 

measure the heat transfer rate at the plate and Fig.17and 18 

depicts the changes in the values of Nusselt number with 

Prandtl number. For both isothermal and ramped 

temperature plates, Nusselt number increases on increasing 

Pr. Further, for isothermal plate, Nu decreases with the 

increase in time.On the other hand, for ramped 

temperature, it increases on increasing t. 

5. Conclusion 

For both isothermal and ramped temperature plates; it 

is found that primary fluid velocity and secondary fluid 

velocity attain a different maximum value in the vicinity of 

the plate and then decrease gradually. Other conclusions 

are as follows: 

 Larger value of magnetic field and rotation decreases 

the primary fluid velocity, and increases the magnitude 

of secondary fluid velocity. 
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 The amplitude of temperature, velocity and 

concentration fields for isothermal plate are always 

larger than ramped plate temperature. 

 The magnitude of dimensionless velocities increases 

with an increase in the permeability of porous medium.  

 The increase in either Soret number or time causes the 

decrease in Sherwood number. 

Also, the model under consideration can be expanded 

into the studies of the flow past spheres, cylinders, cones, 

and wedges etc., according to the required applications. 

Comparison of Result 

To check the validity of our result, we have compared 

one of our results with R. Muthucumaraswamy and K. M. 

A. Prema[3]. They considered the Hall effects on flow past 

an exponentially accelerated infinite isothermal vertical 

plate with mass diffusion. In absence of Soret effect i.e. 

taking Sr =0 expression of concentration field of the 

present problem is
6( ,  ) ( )iso z t Erfc k  . Fig.19 and 

Fig. 20 show the concentration profile for different values 

of Sc obtained by present author and Muthucumaraswamy 

& Prema[3] respectively. Schmidt number Sc is a 

dimensionless number defined as the ratio of momentum 

diffusivity (viscosity) and mass diffusivityof the fluid. It 

physically relates the relative thickness of the 

hydrodynamic layer and mass-transfer boundary layer. For 

Ethyl Benzene the value of Schmidt number Sc is 

2.01.Both figures uniquely express the fact that 

concentration in the system decreases for increasing values 

of Schmidt number. Hence, an excellent agreement of 

results between present author and Muthucumaraswamy & 

Prema[3] is observed. 
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