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Abstract  

Benefits of economic designs can be realized to the full extent only by employing appropriate optimization techniques for 

minimizing the so called loss-cost functions or the total cost functions. Approximate methods employed to find the best 

control chart parameters may not be effective in obtaining the intended cost benefits. In the present work, differential 

evolution (DE), a population based evolutionary optimization technique has been employed to design joint X and R control 

charts.  The optimum costs obtained are compared with the earlier designs which are based on conventional optimization 

techniques. It has been observed that the designs obtained using DE are very effective and in majority of the cases remarkable 

improvements are obtained in cost reductions.  
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1. Introduction 

 The simultaneous use of  chart to control the 

process mean and R chart to control the process variability 

gives good control of the process. The power of joint  

and R charts is much greater than that of  or R chart 

alone. Therefore, in practice, and R control charts are 

usually employed together to monitor the processes. The 

economic design of joint  and R control charts involves 

the determination of economically optimal sample size, 

sampling interval, and control limit coefficient for each 

chart, so as to minimize the total expected cost of 

controlling the process. 

The economic design of joint  and R charts has been 

studied by various authors. Saniga [1] developed an 

expected cost model and performed a sensitivity analysis 

of the model for a process whose mean and variance are 

controlled by  and R charts. Saniga [2] investigated the 

effects of the types of process models on the joint 

economic design of  and R charts and suggested that 

accurate process model selection is an important 

determinant of the quality of joint  and R control chart 

design. Jones and Case [3] developed an economic model 

which determines the design of joint  and R charts to 

minimize costs and reported that the joint economic design 

can result in considerable savings over the traditional 

design of  and R charts. Rahim [4] developed a computer 

program for the optimal economic design of joint  and R 

charts based on the cost model of Saniga and Montgomery 

[5]. Chung and Chen [6] presented a simplified algorithm  

 

for the determination of optimal design parameters of joint 

 and R control charts. Costa [7] developed a model for 

joint economic design of  and R control charts, where 

two assignable causes are allowed to occur independently 

according to exponential distributions and found that the 

cost surface is convex to the model considered. Gelinas 

and Lefrancois [8] proposed a heuristic approach for the 

economic design of  and R control charts. Costa and 

Rahim [9] developed a cost model to determine the design 

parameters of joint  and R charts by adopting a non-

uniform sampling interval scheme. A sensitivity analysis 

of the model is conducted and the cost savings associated 

with the use of non-uniform sampling intervals instead of 

constant sampling intervals are evaluated. Gelinas [10] 

presented a power approximation model for the joint 

determination of  and R control chart parameters based 

on three regression equations which are used to estimate 

the sample size and the control limits for the  chart and 

the R chart and the method’s performance is tested using a 

set of previously studied problems. Use of evolutionary 

computational algorithms has become the need of the day 

to solve complicated objective functions in search of 

global solutions. Chou et al. [11] proposed joint economic 

design of  and R charts with variable sampling intervals 

using genetic algorithm. Minimizing the risk of using the 

uncertain cost and process parameters in the economic 

designs of  control chart has been dealt by Vommi and 

Seetala [12,13] employing genetic algorithm as a search 

tool. The present paper proposes the application of 

Neoteric Differential Evolution algorithm for the economic 
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design of joint  and R charts based on the cost model 

of Saniga and Montgomery [5].  

2.  Cost Model 

The process is assumed to start in a state of statistical 

control. The measurable quality characteristic of the 

process is assumed to be normally distributed with mean 

μ0 and variance σ0
2. The process is subject to a single 

assignable cause of variation. The time lapse between 

successive occurrences of the assignable cause is assumed 

to follow a negative exponential distribution with 

parameter λ. The occurrence of the assignable cause shifts 

the process mean from μ0 to μ1= μ0+δσ0, where δ is a 

positive constant. Furthermore, it is assumed that with the 

change in the process mean, the process variance σ0
2 

changes to σ1
2, (σ1

2  σ0
2) and also the process is shut 

down during the search for the assignable cause. The 

production cycle for the process model then consists of 

four possible periods: (a) the in-control period, (b) the out-

of-control period due to the occurrence of the assignable 

cause, (c) the search period due to a false alarm, and (d) 

the search and repair period due to a true alarm. The cost 

model incorporates the fixed and variable costs of 

sampling, the cost of searching for the assignable cause 

when it exists, any adjustment or repair costs and the cost 

of searching for an assignable cause that does not exist. 

Notation used in the formulation of loss-cost function: 

n = sample size 

h = sampling interval 

τs = expected search time for false alarm 

Ks = expected search cost for false alarm 

τr = expected search and adjustment time for true alarm 

Kr = expected search and adjustment cost for true alarm 

V0 = profit per hour when the process is in control   

V1 = profit per hour when the process is out of control 

L = average loss-cost per hour of the process 

b = fixed cost of sampling 

c = variable cost of sampling 

α = probability that the control charts for  or R or     

both indicate a false alarm (Type I error) 

 = probability of Type I error of  chart 

 = power of  chart 

αR = probability of Type I error of R chart 

PR = power of R chart 

    Φ(x) = standard normal cumulative distribution function 

P = probability that the control charts for  or R or      

both indicate a true alarm 

τ = average time within an interval before the 

assignable cause occurs 

K1 = control limit coefficient for  chart 

K2 = control limit coefficient for R chart 

Saniga and Montgomery [5] presented the expected 

loss-cost per hour of operation as: 

 
  

(1)

                                                            

Where  

          (2)                                                                                     

   (3)

   

                                                                                            

,               (4)                                                                                                             

,                                                       (5)                                       

,                                           

= ,                                 (6)                                                             

.                   (7)                                                                                           

Chung and Chen [6] approximated the expression 

 to  and the loss-cost 

function had been modified to L given as under. In order 

to compare the optimum solutions obtained by Chung and 

Chen [6] with the solutions obtained in the present work 

by applying DE technique, the same modified loss cost 

function L has been used. 

=

            

(8)

 

Hence, the present objective is to minimize the loss-

cost function,  with respect to the design parameters n, h, 

K1, and K2. However, also depends on α and P, which, 

in turn, involve the normal probability distribution 

function and the probability integral of the distribution of 

the range. The expressions for α and P is presented as 

follows: 

Denoting by X(1), X(2), …, X(n) a random sample of n 

observations, arranged in an ascending order of magnitude, 

drawn from a normal population having mean μ0 and 

variance σ0
2, the sample range R can be written as  X(n) - 

X(1) .  

The cumulative distribution function for the 

standardized range, W0=R/σ0 can be expressed as                

  

          (9)               

where   

.                                         
(10)

                                                     

The upper and lower control limits respectively for the 

 chart are  

=              (11)                                                                                      

and 

=                                                  (12)                                       

 

where    , .  

  

Also, the upper and lower control limits respectively 

for the R chart are 

=                                                                        (13)                             

And 

=0                                                                                  (14)                

where . 

The expressions for the joint probability of false alarm 

(Type I error) and the joint probability of true alarm 

(power) for  and R charts are as follows: 



 © 2011  Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 5,  Number 2  (ISSN 1995-6665) 

 

151 

                                                   (15)                                                                   

and 

  (16)                            

where .  

                  (17)                                                                          

and  

.                                          (18)                                    

Thus, the joint probability of false alarm for the  and 

R charts is 

.                                            (19)                                           

Similarly, the joint probability of true alarm for the  

and R charts is 

.                                               (20)                                      

3.  . Application of Differential Evolution to Joint 

Economic Design of  and R Charts 

Differential Evolution is a population-based, direct-

search algorithm for globally optimizing the complicated 

objective functions. For the present joint economic design, 

Neoteric Differential Evolution algorithm suggested by 

Feoktistov [14] has been used. Storn and Price [15] first 

proposed classical Differential Evolution algorithm which 

forms the base for the present Neoteric Differential 

Evolution. 

In Differential Evolution, the individuals of population 

contain design parameters and represent potential optimal 

solutions. The population is initialized by randomly 

generating individuals within the lower and higher 

boundary limits of the design parameters. Each individual 

of the initial population is evaluated by the cost function. 

In order to obtain next generation from the initial 

population, any one individual is chosen as the current best 

individual. Then, the initial population is subjected to 

repeated generations of differentiation, crossover and 

selection. Differentiation and crossover operations are 

used to create one trial or child individual for each target 

or parent individual. In order to perform the 

differentiation, a set of individuals, mutually different and 

also different from the current target individual, are 

randomly chosen from the current population. The search 

strategies of differentiation are designed on the basis of 

these individuals. In the crossover, by recombining the 

trial and target individuals, the trial individual inherits 

parameters of the target individual with certain probability. 

Next, boundary limits of the trial individual parameters are 

verified. If any parameter exceeds the limits, the parameter 

is reset by re-initialization. This trial individual is 

evaluated by the cost function. Afterwards, selection is 

fulfilled by comparing the cost function values of target 

and trial individuals. If the trial individual has an equal or 

lower cost to the target individual, it replaces its target 

individual in the population. If the trial individual has 

higher cost than the target one then the target individual is 

retained. Then, if the new trial individual of the population 

is better than the current best individual, the current best 

individual’s index is updated.figure1 shows how the 

differential evolution is applied for joint economic design 

of  and R control charts. 

 
Figure 1. Procedure for Economic Design of Joint  and R Control 

Charts Using Differential Evolution  

In the present work, an individual of the population 

represents a set of design parameters of joint  and R 

control charts, namely n, h, K1, and K2. To define the 

limits of search space, feasible values are taken as lower 

and higher boundary limits of design parameters by 

considering the published economic designs on joint  and 

R control charts. Table1 contains the boundary constraints 

taken on the parameters of the control charts.  

Table 1: Boundary constraints of  and R charts parameters used 

in present Differential Evolution algorithm 

 and R Charts Parameters 
Low – High Boundary 

Limits 

n 2 – 33 

h 0.25 – 12.00 

K1 1.00 – 6.00 

K2 1.00 – 6.00 

Once the search space has been defined, the next step is 

to find the best parameters of the evolutionary algorithm. 

Parametric tuning has been carried out to find the effective 

control parameters for the algorithm namely population 

size, constant of differentiation, and constant of crossover. 

A few loss-cost function evaluations have been made using 

different combinations of control parameters, generations 

and search strategies. Different population sizes in 

multiples of 10, number of generations in multiples of 50 

and search strategies of differentiation as suggested in 

Feoktistov [14] have been tested. For refining the selection 

of constant of differentiation (F) and constant of crossover 

(Cr), different values in multiples of 0.05 have been 
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chosen in the intervals [0,1] for F and [0,1] for Cr. By 

using the feedback provided by these function evaluations 

and following the practical guidelines given in Feoktistov 

[14], the parameters for the differential evolution 

algorithm have been finalized. Table2 shows the 

parameters of DE employed in the present work to obtain 

the optimum control chart design parameters. 

Table 2: Parameters used in present Differential Evolution 

algorithm. 

Description of the Differential Evolution 

algorithm parameters 

Magnitude/ 

method 

No. of design parameters in a set 4 

Population size 80 

Search strategy Rand3 

Constant of Differentiation, F 0.85 

Type of Crossover Combinatorial 

Constant of Crossover, Cr 0.50 

Selection scheme Elitist 

Number of generations 300 

As the performance of any evolutionary algorithm is 

best represented by the probability distribution of the best 

objective value ( Kuo et al. [16]), it is required to run 

algorithm for a number of times, in order to check its 

consistency in providing the best solution. While obtaining 

robust X chart designs using genetic algorithm, Vommi 

and Seetala [13] has run the algorithm for 300 times and 

obtained the statistics of the best objective values.  In the 

present case, to check the consistency of the algorithm in 

providing the best solutions, the algorithm has been run for 

300 times for 40 sets of randomly selected cost and 

process parameters. All the 300 runs yielded the same best 

design parameters as reported in the present paper for each 

of the selected cost and process parameters sets. Since 

there is no variation in the best values of the objective 

function, single solution corresponding to each input data 

set for X and R control charts has been tabulated. The 

joint economic designs of Chung and Chen [6] are 

considered for comparison of optimum designs obtained 

by the present algorithm for the same cost and process 

parameters. A comparison of the results is presented in 

table 3. 

 

 
Table 3.Comparison of Results 

Cost and process parameters Chung and Chen’s results Differential Evolution results % of Reduction in Loss-cost 

 
c The  values of cost and process parameters are same as  Chung and Chen[6]. 
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Table 3 (cont.): Comparison of Results 

Cost and process parameters Chung and Chen’s results Differential Evolution results % of Reduction in Loss-cost 

c The  values of cost and process parameters are same as  Chung and Chen[6]. 
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Table 3 (cont.): Comparison of Results 

Cost and process parameters Chung and Chen’s results Differential Evolution results % of Reduction in Loss-cost   

c The  values of cost and process parameters are same as  Chung and Chen[6]. 
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4. Results and Discussion  

Differential Evolution algorithm has been applied in 

the joint economic design of X and R charts by utilizing 

the cost and process parameters of Saniga and 

Montgomery [5]. Given the cost and risk factors and other 

process parameters, the present work finds the sample size, 

the interval between samples and the control limit 

coefficient for each chart that minimize the expected loss-

cost per hour. A large number of designs (160) have been 

considered and the solutions obtained are compared with 

the solutions reported by Chung and Chen [6]. In all the 

cases, the present algorithm has been found to yield lower 

loss-costs compared to Chung and Chen’s algorithm. A 

maximum cost reduction of 14% has been obtained which 

shows the effectiveness of the DE. Also, it has been 

observed that the algorithm could provide the same best 

solutions even after a number of times the algorithm was 

run with different initial solutions.  

The optimal sample sizes of the joint economic designs 

obtained by Chung and Chen [6] are found to range from 2 

to 30. Hence, the probability integral for the standardized 

range values, Fn(w0), for n between 2 and 30 is required 

for the joint economic designs. Pearson and Hartley [17] 

published the function Fn(w0) for the values of n between 2 

and 20 which can be used for designs involving n values 

up to 20. Beyond the sample size of 20, Fn(w0) values are 

not published, hence are not readily available  Therefore, 

in the present work a program has been developed to 

evaluate Fn(w0). A database for the values of Fn(w0) has 

been developed for n between 2 and 33 since it takes lot of 

time to evaluate the probability integral for different values 

of n while the DE algorithm is running. The cost function 

evaluation program is made to use the same database for 

easy and instant retrieval of the Fn(w0) values. This saves a 

lot of time in the cost function evaluations using DE. The 

values of Fn(w0) for n between 21 and 33 are presented in 

table 4 for ready reference. 

Finally, it is concluded that the economic designs 

obtained using Differential evolution, an evolutionary 

global optimization technique, are much superior in that 

they provided cost reductions of up to 14% compared to 

the earlier designs of Chung and Chen [6]. Hence, it is 

recommended to use evolutionary optimization techniques 

in the economic design of control charts as it is difficult to 

obtain closed form solutions by differentiating the loss-

cost functions and also the designs are superior to the 

algorithms used earlier. 

  



 © 2011  Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 5,  Number 2  (ISSN 1995-6665) 

 

156 

Table 4: Probability Integral of the Standardized Range W0 for Normal Samples (of size n between 21 and 33) 

n 

W0 

21 22 23 24 25 26 27 28 29 30 31 32 33 

1.55              

1.60 0.0001             

1.65 0.0001 0.0001            

1.70 0.0002 0.0001 0.0001           

1.75 0.0002 0.0002 0.0001 0.0001          

1.80 0.0004 0.0002 0.0002 0.0001 0.0001         

1.85 0.0005 0.0004 0.0002 0.0002 0.0001 0.0001        

1.90 0.0008 0.0005 0.0004 0.0002 0.0002 0.0001 0.0001       

1.95 0.0012 0.0008 0.0005 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001     

2.00 0.0016 0.0011 0.0008 0.0006 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001    

2.05 0.0023 0.0016 0.0011 0.0008 0.0006 0.0004 0.0003 0.0002 0.0001 0.0001 0.0001 0.0001  

2.10 0.0031 0.0023 0.0016 0.0012 0.0008 0.0006 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 

2.15 0.0042 0.0031 0.0023 0.0017 0.0012 0.0009 0.0007 0.0005 0.0003 0.0003 0.0002 0.0001 0.0001 

2.20 0.0057 0.0042 0.0031 0.0023 0.0017 0.0013 0.0010 0.0007 0.0005 0.0004 0.0003 0.0002 0.0002 

2.25 0.0075 0.0056 0.0043 0.0032 0.0024 0.0018 0.0014 0.0010 0.0008 0.0006 0.0004 0.0003 0.0002 

2.30 0.0097 0.0074 0.0057 0.0044 0.0033 0.0025 0.0019 0.0015 0.0011 0.0009 0.0007 0.0005 0.0004 

2.35 0.0125 0.0097 0.0075 0.0058 0.0045 0.0035 0.0027 0.0021 0.0016 0.0013 0.0010 0.0007 0.0006 

2.40 0.0159 0.0125 0.0098 0.0077 0.0061 0.0048 0.0037 0.0029 0.0023 0.0018 0.0014 0.0011 0.0009 

2.45 0.0200 0.0160 0.0127 0.0101 0.0080 0.0064 0.0050 0.0040 0.0032 0.0025 0.0020 0.0016 0.0012 

2.50 0.0249 0.0201 0.0162 0.0130 0.0105 0.0084 0.0067 0.0054 0.0043 0.0035 0.0028 0.0022 0.0018 

2.55 0.0307 0.0251 0.0204 0.0166 0.0135 0.0110 0.0089 0.0072 0.0059 0.0047 0.0038 0.0031 0.0025 

2.60 0.0375 0.0309 0.0254 0.0209 0.0172 0.0141 0.0116 0.0095 0.0078 0.0064 0.0052 0.0043 0.0035 

2.65 0.0454 0.0378 0.0314 0.0261 0.0217 0.0180 0.0149 0.0124 0.0102 0.0085 0.0070 0.0058 0.0048 

2.70 0.0544 0.0457 0.0384 0.0322 0.0270 0.0226 0.0190 0.0159 0.0133 0.0111 0.0093 0.0077 0.0065 

2.75 0.0647 0.0549 0.0465 0.0394 0.0333 0.0282 0.0238 0.0201 0.0170 0.0144 0.0121 0.0102 0.0086 

2.80 0.0762 0.0652 0.0558 0.0477 0.0407 0.0348 0.0297 0.0253 0.0215 0.0183 0.0156 0.0133 0.0113 

2.85 0.0891 0.0769 0.0664 0.0572 0.0493 0.0424 0.0365 0.0314 0.0270 0.0232 0.0199 0.0171 0.0147 

2.90 0.1033 0.0900 0.0782 0.0680 0.0591 0.0513 0.0445 0.0386 0.0334 0.0290 0.0251 0.0217 0.0188 

2.95 0.1190 0.1044 0.0915 0.0802 0.0702 0.0614 0.0537 0.0469 0.0410 0.0358 0.0312 0.0272 0.0238 

3.00 0.1360 0.1203 0.1062 0.0938 0.0827 0.0729 0.0642 0.0566 0.0498 0.0438 0.0385 0.0338 0.0297 

3.05 0.1545 0.1375 0.1223 0.1088 0.0966 0.0858 0.0761 0.0675 0.0599 0.0530 0.0470 0.0416 0.0368 

3.10 0.1743 0.1562 0.1399 0.1252 0.1120 0.1001 0.0895 0.0799 0.0713 0.0636 0.0567 0.0506 0.0451 

3.15 0.1953 0.1762 0.1589 0.1432 0.1289 0.1160 0.1043 0.0938 0.0842 0.0756 0.0679 0.0609 0.0546 

3.20 0.2177 0.1976 0.1792 0.1625 0.1472 0.1333 0.1206 0.1091 0.0986 0.0891 0.0805 0.0727 0.0656 

3.25 0.2411 0.2202 0.2009 0.1832 0.1670 0.1521 0.1385 0.1260 0.1146 0.1042 0.0946 0.0860 0.0781 

3.30 0.2656 0.2439 0.2238 0.2053 0.1881 0.1723 0.1578 0.1444 0.1320 0.1207 0.1103 0.1008 0.0920 

3.35 0.2910 0.2687 0.2479 0.2285 0.2106 0.1939 0.1785 0.1642 0.1510 0.1388 0.1276 0.1172 0.1076 

3.40 0.3173 0.2944 0.2730 0.2530 0.2343 0.2169 0.2006 0.1855 0.1715 0.1585 0.1464 0.1351 0.1247 

3.45 0.3441 0.3209 0.2990 0.2784 0.2591 0.2410 0.2241 0.2082 0.1934 0.1796 0.1667 0.1546 0.1434 

3.50 0.3716 0.3480 0.3257 0.3047 0.2849 0.2662 0.2487 0.2322 0.2167 0.2021 0.1885 0.1757 0.1637 

3.55 0.3994 0.3757 0.3532 0.3318 0.3116 0.2925 0.2744 0.2573 0.2412 0.2260 0.2116 0.1982 0.1855 

3.60 0.4274 0.4037 0.3811 0.3595 0.3390 0.3195 0.3010 0.2834 0.2668 0.2510 0.2361 0.2220 0.2087 

3.65 0.4555 0.4319 0.4093 0.3877 0.3670 0.3473 0.3285 0.3105 0.2934 0.2772 0.2618 0.2471 0.2332 

3.70 0.4836 0.4602 0.4378 0.4162 0.3954 0.3756 0.3565 0.3383 0.3209 0.3043 0.2885 0.2734 0.2589 



 © 2011  Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 5,  Number 2  (ISSN 1995-6665) 

 

157 

 

Table 4 (cont.): Probability Integral of the Standardized Range W0 for Normal Samples (of size n between 21 and 33) 

n  

W0 

21 22 23 24 25 26 27 28 29 30 31 32 33 

3.75 0.5115 0.4885 0.4662 0.4448 0.4241 0.4042 0.3851 0.3668 0.3491 0.3323 0.3161 0.3006 0.2858 

3.85 0.5662 0.5441 0.5227 0.5019 0.4817 0.4621 0.4431 0.4247 0.4070 0.3899 0.3733 0.3574 0.3420 

3.90 0.5927 0.5713 0.5504 0.5300 0.5102 0.4909 0.4722 0.4540 0.4363 0.4192 0.4027 0.3866 0.3712 

3.95 0.6186 0.5979 0.5776 0.5578 0.5384 0.5195 0.5011 0.4831 0.4657 0.4487 0.4322 0.4162 0.4007 

4.00 0.6438 0.6238 0.6042 0.5850 0.5662 0.5477 0.5297 0.5121 0.4949 0.4782 0.4618 0.4459 0.4305 

4.05 0.6681 0.6490 0.6301 0.6116 0.5933 0.5754 0.5579 0.5407 0.5239 0.5074 0.4914 0.4757 0.4604 

4.10 0.6915 0.6733 0.6552 0.6374 0.6198 0.6025 0.5855 0.5688 0.5524 0.5364 0.5206 0.5052 0.4901 

4.15 0.7140 0.6966 0.6794 0.6623 0.6455 0.6289 0.6125 0.5963 0.5804 0.5648 0.5494 0.5344 0.5196 

4.20 0.7355 0.7190 0.7026 0.6864 0.6703 0.6544 0.6386 0.6231 0.6077 0.5926 0.5777 0.5631 0.5487 

4.25 0.7559 0.7404 0.7249 0.7094 0.6941 0.6789 0.6639 0.6490 0.6343 0.6197 0.6054 0.5912 0.5772 

4.30 0.7753 0.7607 0.7461 0.7315 0.7170 0.7026 0.6882 0.6740 0.6599 0.6460 0.6322 0.6185 0.6051 

4.35 0.7937 0.7800 0.7662 0.7525 0.7388 0.7251 0.7115 0.6980 0.6846 0.6713 0.6581 0.6450 0.6321 

4.40 0.8110 0.7981 0.7853 0.7724 0.7595 0.7466 0.7338 0.7210 0.7083 0.6956 0.6831 0.6706 0.6582 

4.45 0.8272 0.8153 0.8032 0.7912 0.7791 0.7670 0.7550 0.7429 0.7309 0.7189 0.7070 0.6952 0.6834 

4.50 0.8424 0.8313 0.8201 0.8089 0.7976 0.7863 0.7750 0.7637 0.7524 0.7411 0.7298 0.7186 0.7075 

4.55 0.8566 0.8463 0.8360 0.8255 0.8150 0.8045 0.7939 0.7833 0.7727 0.7621 0.7516 0.7410 0.7304 

4.60 0.8698 0.8603 0.8507 0.8411 0.8313 0.8215 0.8117 0.8018 0.7919 0.7820 0.7721 0.7622 0.7523 

4.65 0.8820 0.8733 0.8645 0.8556 0.8466 0.8375 0.8284 0.8192 0.8100 0.8007 0.7915 0.7822 0.7729 

4.70 0.8934 0.8854 0.8772 0.8690 0.8607 0.8524 0.8439 0.8354 0.8269 0.8183 0.8097 0.8011 0.7924 

4.75 0.9038 0.8965 0.8890 0.8815 0.8739 0.8662 0.8584 0.8506 0.8427 0.8347 0.8267 0.8187 0.8107 

4.80 0.9134 0.9067 0.8999 0.8930 0.8861 0.8790 0.8718 0.8646 0.8574 0.8500 0.8427 0.8352 0.8278 

4.85 0.9222 0.9161 0.9099 0.9037 0.8973 0.8908 0.8843 0.8776 0.8710 0.8642 0.8574 0.8506 0.8437 

4.90 0.9302 0.9247 0.9191 0.9134 0.9076 0.9017 0.8957 0.8897 0.8836 0.8774 0.8711 0.8649 0.8585 

4.95 0.9376 0.9326 0.9275 0.9223 0.9170 0.9117 0.9062 0.9007 0.8951 0.8895 0.8838 0.8780 0.8722 

5.00 0.9443 0.9398 0.9352 0.9305 0.9257 0.9208 0.9159 0.9109 0.9058 0.9007 0.8955 0.8902 0.8849 

5.05 0.9503 0.9463 0.9421 0.9379 0.9336 0.9292 0.9247 0.9202 0.9156 0.9109 0.9062 0.9014 0.8965 

5.10 0.9558 0.9522 0.9484 0.9446 0.9407 0.9368 0.9327 0.9286 0.9245 0.9202 0.9159 0.9116 0.9072 

5.15 0.9608 0.9575 0.9542 0.9507 0.9472 0.9437 0.9400 0.9363 0.9326 0.9288 0.9249 0.9209 0.9170 

5.20 0.9652 0.9623 0.9593 0.9563 0.9531 0.9499 0.9467 0.9433 0.9399 0.9365 0.9330 0.9295 0.9259 

5.25 0.9693 0.9667 0.9640 0.9612 0.9584 0.9556 0.9526 0.9497 0.9466 0.9435 0.9404 0.9372 0.9339 

5.30 0.9729 0.9705 0.9682 0.9657 0.9632 0.9607 0.9580 0.9554 0.9526 0.9499 0.9471 0.9442 0.9413 

5.35 0.9761 0.9740 0.9719 0.9697 0.9675 0.9652 0.9629 0.9605 0.9581 0.9556 0.9531 0.9505 0.9479 

5.40 0.9790 0.9771 0.9753 0.9733 0.9714 0.9693 0.9673 0.9651 0.9630 0.9608 0.9585 0.9562 0.9539 

5.45 0.9815 0.9799 0.9783 0.9766 0.9748 0.9730 0.9712 0.9693 0.9673 0.9654 0.9634 0.9613 0.9593 

5.50 0.9838 0.9824 0.9809 0.9794 0.9779 0.9763 0.9746 0.9730 0.9713 0.9695 0.9677 0.9659 0.9641 

5.55 0.9858 0.9846 0.9833 0.9820 0.9806 0.9792 0.9777 0.9763 0.9748 0.9732 0.9716 0.9700 0.9684 

5.60 0.9876 0.9865 0.9854 0.9842 0.9830 0.9818 0.9805 0.9792 0.9779 0.9765 0.9751 0.9737 0.9722 

5.65 0.9892 0.9882 0.9873 0.9862 0.9852 0.9841 0.9830 0.9818 0.9806 0.9794 0.9782 0.9769 0.9757 

5.70 0.9906 0.9898 0.9889 0.9880 0.9871 0.9861 0.9851 0.9841 0.9831 0.9820 0.9809 0.9798 0.9787 

5.75 0.9918 0.9911 0.9903 0.9896 0.9887 0.9879 0.9870 0.9862 0.9852 0.9843 0.9834 0.9824 0.9814 

5.80 0.9929 0.9923 0.9916 0.9909 0.9902 0.9895 0.9887 0.9880 0.9872 0.9863 0.9855 0.9847 0.9838 

5.85 0.9939 0.9933 0.9927 0.9921 0.9915 0.9909 0.9902 0.9895 0.9888 0.9881 0.9874 0.9867 0.9859 

5.90 0.9947 0.9942 0.9937 0.9932 0.9926 0.9921 0.9915 0.9909 0.9903 0.9897 0.9891 0.9884 0.9878 

5.95 0.9954 0.9950 0.9946 0.9941 0.9936 0.9932 0.9927 0.9922 0.9916 0.9911 0.9905 0.9900 0.9894 
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Table 4 (cont.): Probability Integral of the Standardized Range W0 for Normal Samples (of size n between 21 and 33) 

n     

W0 

21 22 23 24 25 26 27 28 29 30 31 32 33 

6.00 0.9961 0.9957 0.9953 0.9949 0.9945 0.9941 0.9937 0.9932 0.9928 0.9923 0.9918 0.9913 0.9908 

6.05 0.9966 0.9963 0.9960 0.9956 0.9953 0.9949 0.9945 0.9942 0.9938 0.9933 0.9929 0.9925 0.9921 

6.10 0.9971 0.9968 0.9965 0.9962 0.9959 0.9956 0.9953 0.9950 0.9946 0.9943 0.9939 0.9935 0.9932 

6.15 0.9975 0.9973 0.9970 0.9968 0.9965 0.9962 0.9960 0.9957 0.9954 0.9951 0.9948 0.9944 0.9941 

6.20 0.9979 0.9977 0.9974 0.9972 0.9970 0.9968 0.9965 0.9963 0.9960 0.9958 0.9955 0.9952 0.9949 

6.25 0.9982 0.9980 0.9978 0.9976 0.9974 0.9972 0.9970 0.9968 0.9966 0.9964 0.9961 0.9959 0.9957 

6.30 0.9984 0.9983 0.9981 0.9980 0.9978 0.9976 0.9975 0.9973 0.9971 0.9969 0.9967 0.9965 0.9963 

6.35 0.9987 0.9985 0.9984 0.9983 0.9981 0.9980 0.9978 0.9977 0.9975 0.9973 0.9972 0.9970 0.9968 

6.40 0.9989 0.9988 0.9986 0.9985 0.9984 0.9983 0.9982 0.9980 0.9979 0.9977 0.9976 0.9974 0.9973 

6.45 0.9990 0.9989 0.9988 0.9987 0.9986 0.9985 0.9984 0.9983 0.9982 0.9981 0.9979 0.9978 0.9977 

6.50 0.9992 0.9991 0.9990 0.9989 0.9988 0.9988 0.9987 0.9986 0.9985 0.9984 0.9983 0.9981 0.9980 

6.55 0.9993 0.9992 0.9992 0.9991 0.9990 0.9989 0.9989 0.9988 0.9987 0.9986 0.9985 0.9984 0.9983 

6.60 0.9994 0.9994 0.9993 0.9992 0.9992 0.9991 0.9990 0.9990 0.9989 0.9988 0.9987 0.9987 0.9986 

6.65 0.9995 0.9995 0.9994 0.9994 0.9993 0.9992 0.9992 0.9991 0.9991 0.9990 0.9989 0.9989 0.9988 

6.70 0.9996 0.9995 0.9995 0.9995 0.9994 0.9994 0.9993 0.9993 0.9992 0.9992 0.9991 0.9990 0.9990 

6.75 0.9996 0.9996 0.9996 0.9995 0.9995 0.9995 0.9994 0.9994 0.9993 0.9993 0.9992 0.9992 0.9991 

6.80 0.9997 0.9997 0.9996 0.9996 0.9996 0.9995 0.9995 0.9995 0.9994 0.9994 0.9994 0.9993 0.9993 

6.85 0.9998 0.9997 0.9997 0.9997 0.9996 0.9996 0.9996 0.9996 0.9995 0.9995 0.9995 0.9994 0.9994 

6.90 0.9998 0.9998 0.9997 0.9997 0.9997 0.9997 0.9997 0.9996 0.9996 0.9996 0.9995 0.9995 0.9995 

6.95 0.9998 0.9998 0.9998 0.9998 0.9998 0.9997 0.9997 0.9997 0.9997 0.9996 0.9996 0.9996 0.9996 

7.00 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9997 0.9997 0.9997 0.9997 0.9997 0.9996 

7.05 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9997 0.9997 0.9997 

7.10 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9997 

7.15 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 

7.20 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 

7.25 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 
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