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Abstract 

The singularity method has been extensively applied into an analysis of the potential flow through centrifugal pump 

impellers, i.e. direct problem, but it was little utilized in inverse design of such impeller blades, i.e. inverse problem. In this 

paper, a singularity method was applied for inversely designing impeller blades. A cubic Bezier curve was established to 

express mathematically density function of bound vortex intensity along the blade camber line so as to get a smooth and 

loading carefully controlled blade. The angle of attack and blade loading coefficient were taken into account in the given 

density function of bound vortex intensity. The direct and inverse problems have been validated with a typical experimental 

centrifugal pump impeller. Furthermore, the impeller blades were redesigned by using the method, and the three-dimensional 

turbulent viscous flows inside the original and redesigned impellers were calculated numerically by means of a CFD code 

Fluent. It was shown that the blade shape and flow pattern on the blade can be controlled easily by altering the density 

function of bound vortex intensity. The CFD outcomes confirmed that the original impeller hydraulic efficiency was 

improved by 5% at the design duty, but 9% at off-design condition.  
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The singularity method is an important numerical 

approach for numerically solving blade-to-blade potential 

flows within centrifugal impellers and has been 

substantially involved in the analysis of hydrodynamics of 

centrifugal pump impellers for years, for instance, Ayyubi 

and Rao [1], Reddy and Kar [2], Ogawa and Murata [3, 4], 

[5], Kumar and Rao [5, 6]. Unfortunately, this method was 

almost applied to solve a direct problem, rather than an 

inverse one for centrifugal impellers. Betz and Flugge-

Lotz [7] initially proposed a singularity approach for 

inversely establishing radial impeller blades. They realized 

that a two-dimensional potential internal flow in a 

centrifugal impeller is a superposition of a uniform inflow 

at the impeller entrance and a non-uniform flow caused 

from a series of vortexes bound to the blade camber lines. 

The density of bound vortex intensity was assumed to be 

varied circumferentially by means of the Fourier series. An 

analytical equation for calculating the absolute velocity 

induced by those vortices at a point in the flow domain 

was derived. Kashiwabaray [8] expanded this method 

analytically to make it suitable to mixed-flow impellers. In 

his proposal, the blade shape was determined iteratively by 

using the prescribed fluid relative velocity profile on both 

sides of blade. A series of vortex and source (sink) were 

allocated simultaneously on the blade camber lines. The 

density of bound vortex intensity was determined 

numerically with the difference of the two prescribed 

velocity profiles and the length of camber line. The 

intensity of the source (sink) was given by using the blade 

thickness profile specified. Finally, a blade angle was 

calculated by means of the tangential condition, causing an 

updated blade shape. This process was redone unless the 

blade shape no longer was changed. This method was 

applicable to the centrifugal impellers with more number 

of blades (>7). Murata and Miyake et al [9] mapped a S1 

stream-surface (blade-to-blade) of revolution onto a two-

dimensional rectilinear cascade by using conformational 

mapping function twice. Similarly, a series of vortex and 

source (sink) were distributed on the blade camber line; 

then the densities of the bound vortex and source (sink) 

intensities were determined by using the relative velocity 

and blade thickness prescribed. The induced velocity 

equations in Murata and Miyake et al [9] were more 

general than those in Betz and Flugge-Lotz [7]. It is 

believed the blade shape control is hard in those two 

proposals since the relative velocity profile on both sides 

of blade must be prescribed together. They seem 

inconvenient for applications.  

    It is interesting to notice that a simple and smart 

singularity approach for solving the blade-to-blade 
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potential flow on a revolutionary stream-surface was 

presented by Senoo and Nakase [10]. The method has 

found significant applications in the analysis of flow inside 

centrifugal impellers. Recently, it was upgraded with three 

kinds of density function of bound vortex intensity by Li 

[11] and was applied to analyze the potential flow in very 

low specific speed centrifugal pump impellers with various 

blades and splitters. 

Based on this method, a singularity method for 

designing centrifugal pump impeller blades as an inverse 

problem has been developed in this paper. The objective is 

to clarify feasibility of the method for establishing blades 

and to identify if it can easily control the blade shape. The 

blade of an experimental centrifugal pump impeller was 

redesigned as an inverse problem. The hydraulic 

performance of the original and redesigned impellers was 

estimated numerically by using CFD code Fluent. As a 

consequence, more than 5% improvement in the hydraulic 

efficiency was confirmed. 

2. Equations and Methods 

2.1. Direct Problem 

For convenience, a centrifugal pump impeller is 

assumed to rotate contraclockwise as it is viewed against 

its inlet (Fig. 1). The intensity of a contraclockwise bound 

vortex is assumed to be positive; otherwise, it is negative. 

Further, the blades of the impeller are curved backward. In 

that case, the blade angle b  is positive, which is defined 

as the angle between a tangent to the blade camber line at a 

point on a S1 stream-surface of revolution and the reverse 

direction of impeller rotation at that point. Note that the 

angle 90b  is negative, which is the angle between that 

tangent and the meridian plane through that point. 

Figure 1.Impeller meridian plane (a) and S1 stream surface 

(physical surface) (b) as well as computational plane (c), where 

bound vortices are specified 

 

For a direct problem, the number of blades, blade 

camber shape, blade thickness, S1 stream-surfaces of 

revolution and their thickness, the volumetric flow rate 

through the impeller and rotational speed etc have been 

known. The following steps are needed to analyze a two-

dimensional ideal fluid flow in a centrifugal pump impeller 

by using the singularity method proposed initially by 

Senoo and Nakase [10] and updated by Li [11]. 

1. A S1 stream-surface of revolution in terms of the 

coordinates m  in the physical surface was mapped 

onto a circular cascade in terms of the polar coordinates 

R  in the computational plane by using the Prasil 

transformation relations in Senoo and Nakase [10] 
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length of the meridian streamline at the blade exit, r  is the 

radius specifying the stream-surface. Every computation of 

the flow is carried out in the computational plane; once 

finished, it will be transformed back to the physical surface 

via Eq. (1). 

2. A series of bound vortices are assumed to be 

distributed on a blade camber line, so the absolute 

velocity components induced by these vortices 

( Nj  , ,2 ,1  ) at an observed point i  on the blade 

camber line or a point k  in the flow domain in the 

computational plane are given as follows 
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where 2s  is the length of blade camber line at the blade 

outlet, Z  is the number of blades,   is the density of 

bound vortex intensity, which is expressed in terms of the 

length of blade camber s . The velocity components 

 Rkk V,V  are for the point k  in the flow domain. 

3. Provided that the observed point i  is on a blade camber 

line, the fluid relative velocity will be the tangent at 

this point, i.e. the relative flow angle i  equals the 

blade angle bi . Eventually, a tangential condition is be 

satisfied 

    9090  
bi

Ri

i
i tan

W

W
tan                                               (4) 

The relative velocity components are related to the 

absolute velocity via the following equations 
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The velocity components RiW  and iU  are estimated by 

using the flow rate through the impeller and the pre-

circulation in the impeller entrance as follows 
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where Q  is the flow rate across the impeller, ib  is the 

thickness of S1 stream-surface, the blade circumferential 

thickness is biiui sinSS  , iS  is the blade thickness on 

S1 stream-surface, 11rvu  is the absolute velocity moment at 

the impeller entrance, iu  is the impeller speed at the radius 

ir , iu = ir ,   is the angular rotational speed of impeller.  

Putting Eq. (2) into (4), the tangential condition is 

rewritten as 
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This is a system of integral equations in terms of the 

unknown density of bound vortex intensity  . In order to 

get a numerical solution of such an equation system, the 

continuous density   needs to be discretized. Here, a 

continuous blade camber line is divided into small-sized 

segment elements with a number of N . The density of 

bound vortex intensity is considered to be constant in each 

element, but the density in one element may be different 

from that in another. It is assumed the bound vortex is 

located at the centre of each element. The intensity of a 

bound vortex j  ( N,,,,j   3 2 1  ) is connected with its 

density via 

jjj ds  jj s                                                                      (8) 

where js  denotes the length of an element in which 

the vortex j  is prescribed. Substituting ds  in Eq. (7) 

with jj s  in Eq. (8), the system of integral equations 

becomes a system of linear algebraic equations in terms of 

j  
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where the point i  is on the blade camber line, but it is 

the node with larger radius in an element. The tangential 

condition has been applied at that point, so the point i  

( N,,,,i   3 2 1 ) is considered to be a control point. Note 

that the total number of control point i  equals the number 

of elements N . In the last element near the blade trailing 

edge, the Kutta condition must be fulfilled, i.e. N =0. In 

that case, the Eq. (9) represents a set of 1N  

simultaneous linear algebraic equations in 1N  unknown 

variables. 

4. Solve the system of linear equations (9) to determine 

the unknown j . 

5. The induced absolute velocity components in Eq. (2) at 

the point i  on the blade camber line can be calculated 

by using the   that has been determined. 

Subsequently, Eq. (5) is applied to figure out the 

relative velocity components RiW , iW  on the blade 

pressure and suction sides as follows 
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6. Calculate the fluid relative velocity at specified points 

or a series of node of a mesh in the flow passage, if 

necessary. Otherwise, go to the next step. 

7. The relative velocity components in the physical 

surface or S1 stream-surface in terms of the coordinates 

m  are obtained with the following transformation 
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Finally, the Bernoulli equation can be utilized to get the 

pressure field in the flow passage to a reference pressure. 

Moreover, the theoretical head of impeller is predicted by 

  guvuvH uuth 1122                                                               (12) 

And the mean circumferential component of absolute 

velocity at the blade outlet is written as 
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where the mean meridian component of relative 

velocity at the blade outlet is 
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The slip factor is expressed as 
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2.2. Inverse Problem 

For an inverse problem in the singularity method, the 

number of blades, blade thickness profile, blade leading 

and trailing edge shapes and positions, S1 stream-surface 

shape and thickness, flow rate through an impeller and 

rotating speed of the impeller have been known in 

advance; just the blade camber line needs to be 

determined.  

Usually, the blade camber line is represented by a 

relation of radius to warping angle or vice versa. How to 

establish such a relation is a key issue in the inverse 

problem. In most cases, a correct relation has to be 

achieved iteratively based on an initially guessed one. In 

this paper, the following steps are conducted to get a 

proper blade camber line.  

1. Specify a temporary distribution of blade angle 0
b  

along a meridian streamline from the blade leading 

edge to trailing edge, subsequently, a relation of initial 

wrapping angle of blade with r  can be established by 

integrating the blade pattern equation as follows 
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For the sake of convenience, the initial blade usually is 

radial, i.e. 090b . Eq. (16) is numerically integrated by 

simply applying the trapezium rule. Once the initial 
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relation r  is available, the initial blade will be mapped 

onto the computational plane with Eq. (1). 

2. Prescribe a profile of density of bound vortex intensity 

on the blade camber line. A cubic Bezier curve in 

Rogers [12] is utilized to describe the density of bound 

vortex intensity to guarantee a sufficient smooth blade 

camber line achievable. Such a curve is defined by a 

control polygon with four control vertices A, B, C and 

D as shown in Fig. 2. Then the density of bound vortex 

intensity is expressed mathematically as 

        dcba tttttts  3223
13131                     (17) 

where the parameter    ada sssst  , ab c  , 

ac d  , factors c  and d  are adjustable to correlate a .  

Figure 2.A cubic Bezier curve is used to define density 

distribution of bound vortex on blade 

Firstly, the initial blade camber is divided into N  

elements equally, and the length of each element is s . At 

point D, the Kutta condition must be yielded, so the 

coordinates of D are 22 ssss  ， 0d . At point A, 

s.sa  50 , the intensity a  is determined such a way that 

a proper angle of attack   must be realized. In doing so, a 

relative flow angle 1  to the blade leading edge is 

estimated as follows 
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and the meridian velocity component at the leading 

edge is given by 
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Secondly, a proper angle of attack is specified. If the 

impeller is expected to have a better cavitation 

performance, then  =0.5°-3°; otherwise,  =3°-5°. In 

consequence, the blade angle at the inlet is 1b = 1 + . 

Because of arr 1 (radius at point A), then bab  1 , 

auu 1  and mam vv 1 . Subsequently, the circumferential 

component of absolute velocity at point A is written as 
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Finally, the density of bound vortex intensity at point A 

is given by 
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Points B and C are used to control the peak value of the 

density and its position on the blade camber line. Usually, 

    aadaadb sss.,sss.s  5030  and 

    aadaadc sss.,sss.s  95080 . The densities b , c  

are specified with two factors b  and c  as well as a , but 

they are subject to two critical conditions: (a) the peak 

loading coefficient (velocity gradient) on the blade is less 

than 2, i.e. WW  2 to avoid a reverse flow on the blade 

pressure side in Balje [13], where W = ps WW  , sW   

is the relative velocity on blade suction side, pW  that 

on blade pressure side,  ps WW.W  50 ; (b) make sure the 

theoretical head developed by the designed impeller must 

be over the head desired.  

3. Calculate the relative velocity components iW , RiW  by 

using Eqs. (2), (3), (5), (6) with the specified density 

profile of bound vortex intensity, the blade angle bi  is 

updated with Eq. (4). 

4. Integrate Eq. (16) once more by applying the updated 

blade angle bi . In consequence, the relation between 

blade warping angle and blade angle is upgraded and a 

new blade camber line is generated. This computational 

process isn‘t stopped until the blade camber line shows 

little change in its shape. The blade camber line 

convergence criterion is the relative error (difference of 

warping angle over the mean value between two 

successive iterations) is less than 3101  . 

5. Calculate the relative velocities in the flow passage 

with Eqs. (2,3, 5 and (6) and transform those velocities 

into the physical surfaces with Eq. (11). Finally, the 

impeller theoretical head and slip factor etc are 

estimated by using Eqs. (12-15). 

6. If these primary hydraulic parameters are satisfactory, 

then this inverse design process will be terminated. 

Otherwise, a new design should be launched with a 

modified density profile of bound vortex intensity or 

other design variables. Nevertheless, the steps (1)-(5) 

will be carried out until a satisfactory result is achieved.  

7. Generate the three-dimensional solid geometry model 

of the impeller just established and launch CFD 

stimulations of viscous fluid flow inside the impeller to 

make sure the impeller has shown a perfect 

performance and pretty well flow patterns. Otherwise, 

necessary corrections should be applied to the design 

variables and a new inverse design is started by 

following the steps (1) to (5). 

3. Results and Discussions 

3.1. Direction Problem Validation 

In order to validate the method proposed, the ideal fluid 

flow in the experimental impeller presented in Kamimoto 

and Hirai [14] was analyzed by using the method. The 

duty of the impeller at design condition is as follows: 

Q =287m3/h, head H =26m, rotating speed n =1750r/min, 

specific speed sn =156 ( 750653 .
s HQn.n  , r/min, m3/s, 

m), impeller tip speed 2u =27.5m/s, flow coefficient 

 = 2222 ubrQ  =0.154 and head coefficient 

 = 2
2ugH =0.34. The geometrical parameters of the 

impeller as the following: impeller outlet diameter 

2D =300mm, impeller eye diameter eD =150mm. Four 

constant-width (b=20mm), constant-thickness (S=3mm), 

constant-angle ( b =30°) logarithmic spiral blades were 

installed in the shrouded radial impellers. In spite of a bit 

high specific speed, the blades were two-dimensional and 
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without twist along blade span for convenience in 

experiments in Kamimoto and Hirai [14]. Since this 

experimental impeller serves a benchmark in the paper, it 

is not intended to design a new impeller with twist blades. 

This means the ideal flow analysis and blade redesign 

were conducted just on one S1 stream-surface of 

revolution. 

The effect of number of elements of discretized bound 

vortices N  on the impeller theoretical head coefficient   

is shown in Fig. 3. The number of elements does affect the 

head coefficient moderately; fortunately, this effect is 

negligible as the number more than 60. In that case, the 

length of element is around 2.5mm. In the following 

computations, the number of element is kept to be 60. 

The impeller theoretical head  , which was 

determined by using the 2D singularity method, is plotted 

in terms of flow rate coefficient   in Fig. 4a. The head 

coefficients evaluated by means of the one-dimensional 

(1D) Euler turbomachinery head equation with respective 

corrections of Stodola and Wiesner slip factors are also 

shown in the figure. The experimental head coefficient in 

Kamimoto and Hirai [14] is involved in the plot as well. A 

comparison of 2D computed slip factor to those of Stodola 

and Wiesner is made in Fig. 4b. The head coefficient given 

by 2D singularity approach is in between those of the 1D 

Euler head plus slip factor correction. The slip factor due 

to the 2D singularity method is in between those of 

Stodola and Wiesner too. These facts suggest the results 

provided by 2D singularity method seems reasonable.  

Figure 5 illustrates the fluid relative velocities on the blade 

pressure and suction surfaces as well as blade loading 

coefficient WW  in terms of dimensionless blade 

camber line length. On the suction surface, the relative 

velocity of the 2D singularity method is fairly close to the 

experimental profile. On the pressure surface, however, the 

velocity is much lower than the experimental observation; 

further, at the nearby 2rr =0.55 location, i.e. just behind 

the blade leading edge, the relative velocity has become 

zero, causing a maximum difference of velocity between 

the suction and pressure surfaces. Accordingly, the blade 

loading coefficient in Fig. 5b has also got a maximum 

value there. Note that this peak value has been as large as 

2. It was indicated that once WW =2, a fluid flow 

would be separated from the blade pressure side by Balje 

[13]. Obviously, the computed peak loading factor is in 

very good agreement with such an observation. This 

suggests the experimental impeller has been subject to an 

extreme high hydrodynamic loading.  

Figure 5.Relative velocity profile and blade loading coefficient on 

blade pressure and suction surfaces against dimensionless length 

of blade, the symbols indicate the experimental measurements. 

For the 2D singularity method is based on an ideal fluid 

flow model, there is not a boundary layer in the impeller 

passages, causing no any hydraulic losses there. This effect 

causes the estimated impeller theoretical head coefficient 

Figure 3.Impeller theoretical head against flow 

coefficient at various numbers of vortex elements. 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3

φ

ψ

100

60

30

design point

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

r/r
2

w
/u

2

Exp 

2D 

suction side

pressure side

(a) 

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

r/r
2

W
/W

threshod=2 

(b) 

Threshold=2 

Figure 4.Impeller theoretical head coefficient and slip 

factor in terms of flow coefficient, the symbols represent 

experimental data in Kamimoto and Hirai [14]. 
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to be higher than the observation (see Fig. 4a). Such a flow 

model exaggerates the relative velocity difference between 

the blade suction and pressure sides, i.e. blade loading or 

hydrodynamic loading. A much under-estimated velocity 

on the blade pressure surface is responsible for the 

exaggerated difference. The ignored viscous and three-

dimensional effect may be responsible for the 

disagreement in the impeller head coefficient and relative 

velocity profile between observation and calculation. 

3.2. Inverse Problem Validation 

As a known function, the density profile of bound 

vortex intensity on the blade camber line in Fig. 6a, which 

has been determined numerically in the direction problem 

at  =0.154, was imbedded into a code which executes the 

inverse design of blade to identify if the inverse singularity 

method proposed is feasible or not. As result of this, a 

converged blade camber line of 70 iterations is shown in 

Fig. 6b. For that case, the relative error of warping angle 

actually is 9.94 10-4, slightly less than the tolerance 

1×10-3. The original blade camber line precise restoration 

confirms the inverse singularity method and corresponding 

numerical scheme are correct and feasible.  

3.3. Impeller Redesign 

According to Fig. 5, at the design duty, a poor relative 

velocity profile is demonstrated on the blade pressure side 

in the original impeller. The drawbacks in the profile are 

that the peak loading is not only too close to the blade 

leading edge but also quit near the threshold. In that case, 

the hydraulic performance and suction characteristics of 

original impeller may be unsatisfactory, especially at 

partial flow rate. It is highly on demand to improve the 

impeller design. Two measures are taken hereby: (1) put 

more blades into impeller passages to lower the loading 

coefficient level, (2) move the peak loading coefficient 

away from the leading edge to somewhere close to the 

blade trailing edge. In doing so, the number of blades is 

increased to 5 from 4, and the density profile of bound 

vortex intensity is updated as shown in Fig. 7, where the 

peak loading factor has been moved to a position beyond 

the middle of blade camber line, i.e. 2rr =0.78. The peak 

value of the density has been lowered as low as 17m/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.Blade camber lines (a) and blade angle profiles (b) of the 

original and redesigned impellers. 

A comparison of the blade camber line and blade angle 

between the original impeller and redesigned one is made 

in Fig. 8. The new impeller has longer blades (86.6º 

warping angle) than the original (68.8º). The blade angle 

of the redesigned impeller is no longer constant, but takes 

the shape of ‗M‘. The inlet and outlet blade angles are 

decreased to 27º and 22.9º from 30º, respectively. 

Accordingly, the angle of attack is reduced to just 2º from 

the initial 7º. 

The estimated impeller performance is compared with 

that of the original one in Fig. 9a. At the design duty, the 

Figure 6.Known density profile of bound vortex intensity (a) and 

comparison of blade camber line between original and inversely 

designed impellers (b). 
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theoretical head of original impeller is improved by 1m 

(water column height). The redesigned impeller is featured 

with a sharp negative slope head curve. 

Figure 9.Impeller head coefficient (a) in terms of flow coefficient, 

target and achieved densities of bound vortex intensity (b). 

prescribed and achieved densities of bound vortex 

intensity are illustrated in Fig.9b. The achieved density 

was evaluated based on the redesigned impeller as the 

direct problem. The difference in the density between two 

impellers does exist. It is increased towards the blade 

leading edge due to relatively severe bending of blade 

there. The maximum error is about 20% at the blade 

leading edge for there is a singularity point. The error is 

decreased to as low as 2.3% in the middle of blade length. 

The blade loading coefficient is shown in Fig. 10a. 

Compared to Fig. 5b, the peak loading has been moved to 

the middle of blade length, 2rr =0.75, and the peak value 

is just 1.15, which is obviously less than a threshold of 2. 

Likewise, the relative velocity profiles on the blade 

surfaces are very satisfactory (Fig. 10b). The lowest 

velocity position has been moved to the middle of blade; 

moreover, its value is much larger than zero. For the 

redesigned impeller, its hydraulic performance, therefore, 

is superior to the original impeller, especially at partial 

flow rate (Fig. 9a). Note that the fluid is accelerated in the 

65% blade camber line length long (0.5  2rr  0.82) 

from the leading edge to a point beyond the middle of 

camber line on the suction side of the redesigned impeller. 

Such acceleration may suppress the growth of boundary 

layer on the blade suction surface, and may make positive 

contribution to reduction of hydraulic losses. 

 

 

 

 

 

3.4. CFD Conformation 

3D solid geometry models of both the original and 

redesigned impellers have been generated by using 

Gambit. The 1/4 (original) and 1/5(redesigned) of the 

impellers are taken as the flow domain (Fig. 11), 

respectively. About 0.7 million tetrahedral cells are 

meshed and input into a CFD code Fluent to do flow 

simulations. In the simulations, the fluid is assumed to be 

steady, incompressible and turbulent. The standard k  

turbulence is activated to handle the turbulence effects. 

The non-equilibrium wall function is chosen to estimate 

wall shear stress and pressure more precisely. The detailed 

governing equations of flow, turbulence model and wall 

function can be found in Anonymous [15]. SIMPLE 

algorithm with the second-order up-wind scheme was 

applied to solve the governing equations. At the inlet to 

suction pipe, a normal velocity boundary is applied, which 

depends on flow rate. On the blade, shroud and hub, the 

velocity no-slip condition is held. At the outlet to impeller, 

zero pressure is given. The rest boundaries are subject to 

the periodic condition. The residual tolerance is 1×10-4. 

The fluid is water at 20ºC. 
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The impeller theoretical head and hydraulic efficiency 

were extracted and are represented in Fig. 12 for the 

turbulent flow of viscous fluid. Obviously, the 

performance of the original impeller has been improved in 

great deal when the flow coefficient is in 0.025-0.16. At 

design duty  =0.154, the hydraulic efficiency is raised by 

5%, while the low flow coefficient  =0.1, the efficiency 

is increased as high as 9%. These improvements suggest 

the blade loading control is necessary and takes a positive 

effect. 

The relative velocity vector and pressure contour are 

displayed in Fig. 13 on the middle-span plane of the 

impellers for the viscous fluid flow. The reference pressure 

is 10m water column height. Even no significant evidence 

shows a reverse flow onset on the blade pressure side, it is 

noticed that a big zone with low velocity exists there in the 

original impeller. The blade pressure side of the impeller, 

especially, near the leading edge, is subject to much larger 

pressure compared to the redesigned impeller. 

Furthermore, the minimum pressure on the blade suction 

side in the original impeller is as low as -16.4m. In the 

redesigned impeller; however, it is just -5.46m.  

 
Figure 13.Relative velocity vector and static pressure contour of the 

original (a) & (c), redesigned (b) & (d) impellers calculated by CFD 

viscous fluid model. 

The pressure on the blade pressure and suction sides 

and loading coefficient across the blade were extracted 

from the CFD results and are shown in Fig. 14 at the 

design condition. The pressure difference and loading 

coefficient across the blade in the original impeller is 

higher compared to the redesigned impeller, particularly, 

near the blade leading edge. Immediately after the leading 

edge the blade loading is kept to be nearly constant along 

blade in the original impeller; while it is increased until the 

beyond the middle of blade length, then decreased toward 

the trailing edge in the redesigned impeller. This suggests 

that the blade loading control in the inverse design is 

effective.  

The loading coefficient magnitude and profile of 3D 

viscous flow are considerable different from those of 2D 

Figure 11.Flow domains of the original (a) and redesigned (b) 

impellers used in 3D flow CFD simulations. 
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potential flow shown in Fig. 5b. The reason for that is no 

viscous effect is involved in the potential flow model.  

It is believed that the inverse singularity method can 

ensure an impeller to be able to achieve a better 

performance by using a carefully controlled density of 

bound vortex intensity on blade camber line. Such a 

method has a special significance in the redesign of 

existing centrifugal pump impellers. 

Figure 14.Pressure (a) and loading coefficient (b) on blade surface 

of the original and redesigned impellers in mid-span calculated by 

CFD viscous fluid model. 

3.5. Discussion 

The inverse singularity method proposed is subject to 

several limitations, for example, 2D, potential flow model; 

failure of handling viscous effect and secondary flow etc. 

Fortunately, these limitations can be removed by means of 

advanced CFD codes. For 2D blades, the blades can be 

established just on one S1 stream surface. For 3D twist 

blades, however, the blades should be designed on three or 

more S1 stream-surfaces. Theoretically, the current 

method is applicable for that case. However, how to 

specify density profile of bound vortex intensity along 

blade span needs to be investigated further. These S1 

stream-surfaces of revolution can be determined by using 

the through-flow theory as indicated in Ghaly [16], 

Zangeneh [17], Borges [18], Peng et al [19]-[21].  

Turbomachinery impeller blades can be established by 

using a given mean absolute velocity moment rVu  in 

Borges [18], Peng et al [19]-[21], Tan et al [22], Luu et al 

[23], Jenkins and Moore [24], Dang and Isgro [25] and 

[26] or srVu   in Ghaly [16] and Zangeneh [17], has long 

been recognized and realized. On a blade camber line, the 

density of bound vortex intensity   is related to the 

velocity moment rVu  with the following expression 

s

rV
WW u

ps










2
                                                            (22) 

Since the prescribed rVu  can be converted into  ,   

seems be equivalent to srVu  . In this contribution,  ‘s 

effect on the fluid flow in the impeller was taken into 

account by using analytical induced velocity equations. 

The considerable complicated mathematical contents have 

been removed. It is very hopeful such a simple method is 

acceptable for engineers.  

4. Conclusions 

An inverse singularity method was proposed for 

establishing the impeller blades of centrifugal pump in this 

article. A density distribution of bound vortex intensity on 

blade camber line was defined by using a cubic Bezier 

curve. The angle of attack has been involved in such a 

distribution. The results of the direct and inverse problems 

were validated by means of an experimental centrifugal 

pump impeller. The defined density of bound vortex 

intensity can ensure the designed blade to have a carefully 

controlled loading coefficient and smooth camber line to 

guarantee an improved hydraulic performance. The 

method may be applicable to the redesign of existing 

centrifugal pump impellers. Although a satisfactory 

outcome has been achieved yet for 2D blades, a further 

application to 3D twisted blades is highly desired. The 

prospective studies include 3D quasi-three-dimensional 

blade design and optimization of density profile of bound 

vortex tensity along blade camber line and span.  
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